Xin Wang , Mei-Li Sun , Lu Lin , Rodrigo Ledesma-Amaro , Kaifeng Wang , Xiao-Jun Ji
{"title":"产油酵母生产中长链二羧酸的工程策略","authors":"Xin Wang , Mei-Li Sun , Lu Lin , Rodrigo Ledesma-Amaro , Kaifeng Wang , Xiao-Jun Ji","doi":"10.1016/j.biortech.2025.132593","DOIUrl":null,"url":null,"abstract":"<div><div>Medium-long chain dicarboxylic acids (DCAs, C ≥ 6) are essential chemical raw materials, with wide applications in the chemical, pharmaceutical, material and food industries. However, the traditional chemical synthesis methods cause environmental pollution and are not in line with goals of sustainable development. With the development of synthetic biology, high-value-added DCAs can be biosynthesized from hydrophobic substrates (HSs) using suitable microorganisms. This review first summarizes the biosynthetic pathway of DCAs in oleaginous yeasts and then emphasizes the related engineering strategies for increasing the product yield, including promoter, enzyme, pathway, cell, fermentation, and downstream engineering. In addition, the challenges and development trends in the biosynthesis of DCAs are discussed, in light of the current progress, challenges, and trends in this field. Finally, guidelines for future research are proposed. Overall, this review systematically summarizes recent engineering strategies for DCAs production in oleaginous yeasts and offers valuable insights for future DCAs biosynthesis.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"430 ","pages":"Article 132593"},"PeriodicalIF":9.7000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering strategies for producing medium-long chain dicarboxylic acids in oleaginous yeasts\",\"authors\":\"Xin Wang , Mei-Li Sun , Lu Lin , Rodrigo Ledesma-Amaro , Kaifeng Wang , Xiao-Jun Ji\",\"doi\":\"10.1016/j.biortech.2025.132593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Medium-long chain dicarboxylic acids (DCAs, C ≥ 6) are essential chemical raw materials, with wide applications in the chemical, pharmaceutical, material and food industries. However, the traditional chemical synthesis methods cause environmental pollution and are not in line with goals of sustainable development. With the development of synthetic biology, high-value-added DCAs can be biosynthesized from hydrophobic substrates (HSs) using suitable microorganisms. This review first summarizes the biosynthetic pathway of DCAs in oleaginous yeasts and then emphasizes the related engineering strategies for increasing the product yield, including promoter, enzyme, pathway, cell, fermentation, and downstream engineering. In addition, the challenges and development trends in the biosynthesis of DCAs are discussed, in light of the current progress, challenges, and trends in this field. Finally, guidelines for future research are proposed. Overall, this review systematically summarizes recent engineering strategies for DCAs production in oleaginous yeasts and offers valuable insights for future DCAs biosynthesis.</div></div>\",\"PeriodicalId\":258,\"journal\":{\"name\":\"Bioresource Technology\",\"volume\":\"430 \",\"pages\":\"Article 132593\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresource Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960852425005590\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960852425005590","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
Engineering strategies for producing medium-long chain dicarboxylic acids in oleaginous yeasts
Medium-long chain dicarboxylic acids (DCAs, C ≥ 6) are essential chemical raw materials, with wide applications in the chemical, pharmaceutical, material and food industries. However, the traditional chemical synthesis methods cause environmental pollution and are not in line with goals of sustainable development. With the development of synthetic biology, high-value-added DCAs can be biosynthesized from hydrophobic substrates (HSs) using suitable microorganisms. This review first summarizes the biosynthetic pathway of DCAs in oleaginous yeasts and then emphasizes the related engineering strategies for increasing the product yield, including promoter, enzyme, pathway, cell, fermentation, and downstream engineering. In addition, the challenges and development trends in the biosynthesis of DCAs are discussed, in light of the current progress, challenges, and trends in this field. Finally, guidelines for future research are proposed. Overall, this review systematically summarizes recent engineering strategies for DCAs production in oleaginous yeasts and offers valuable insights for future DCAs biosynthesis.
期刊介绍:
Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies.
Topics include:
• Biofuels: liquid and gaseous biofuels production, modeling and economics
• Bioprocesses and bioproducts: biocatalysis and fermentations
• Biomass and feedstocks utilization: bioconversion of agro-industrial residues
• Environmental protection: biological waste treatment
• Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.