Amanda R. Arnold , Benoit Chassaing , Kiran Lakhani , Coralie Bergeron , Emma K. Shaughnessy , Anna M. Rosenhauer , Maura C. Stoehr , Benjamin Horne , Tyler Wilkinson , Kim L. Huhman
{"title":"食用乳化剂增加小鼠对社会压力的敏感性:COX分子途径的潜在作用","authors":"Amanda R. Arnold , Benoit Chassaing , Kiran Lakhani , Coralie Bergeron , Emma K. Shaughnessy , Anna M. Rosenhauer , Maura C. Stoehr , Benjamin Horne , Tyler Wilkinson , Kim L. Huhman","doi":"10.1016/j.yhbeh.2025.105750","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Chronic low-grade inflammation and exposure to stress are key contributing factors in the etiology and progression of many neuropsychiatric disorders. Dietary emulsifiers, such as carboxymethylcellulose (CMC) and polysorbate-80 (P80), are commonly added to processed foods and drinks and are classified by the Food and Drug Administration (FDA) as generally recognized as safe (GRAS). Recently, however, we and others have reported that these additives at translationally relevant doses cause low-grade intestinal inflammation, microbiota dysbiosis, and alterations in gene expression in brain areas that mediate behavioral and neuroendocrine responses to stress-provoking stimuli.</div></div><div><h3>Methods</h3><div>To test whether emulsifier exposure sensitizes behavioral, hormonal, and neuronal responses to stress, C57BL/6 J male mice were given water +1 % emulsifier (CMC or P80) or water alone for 12 weeks after which they were exposed to social defeat stress. We previously found increased PTGS2 (COX-2) gene expression in the amygdala following emulsifier consumption. To determine whether inflammation, potentially through the COX pathway, is a potential mechanism driving emulsifier-induced increases in stress sensitivity, we administered the COX inhibitor aspirin (25 mg/kg/day) in conjunction with emulsifiers for the last six weeks of treatment.</div></div><div><h3>Results</h3><div>In defeated mice, CMC increased circulating corticosterone, while both emulsifiers increased social avoidance behavior and altered defeat-induced c-Fos immunofluorescence in various brain regions. Moreover, behavioral and hormonal alterations were attenuated by aspirin.</div></div><div><h3>Conclusions</h3><div>These data demonstrate that ingestion of at least some dietary emulsifiers at concentrations analogous to those ingested by humans increases sensitivity to social stress in mice and that the COX pathway may be a mechanistic candidate by which emulsifier-induced increases in sensitivity to social stress occur.</div></div>","PeriodicalId":13001,"journal":{"name":"Hormones and Behavior","volume":"172 ","pages":"Article 105750"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Consumption of dietary emulsifiers increases sensitivity to social stress in mice: A potential role for the COX molecular pathway\",\"authors\":\"Amanda R. Arnold , Benoit Chassaing , Kiran Lakhani , Coralie Bergeron , Emma K. Shaughnessy , Anna M. Rosenhauer , Maura C. Stoehr , Benjamin Horne , Tyler Wilkinson , Kim L. Huhman\",\"doi\":\"10.1016/j.yhbeh.2025.105750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Chronic low-grade inflammation and exposure to stress are key contributing factors in the etiology and progression of many neuropsychiatric disorders. Dietary emulsifiers, such as carboxymethylcellulose (CMC) and polysorbate-80 (P80), are commonly added to processed foods and drinks and are classified by the Food and Drug Administration (FDA) as generally recognized as safe (GRAS). Recently, however, we and others have reported that these additives at translationally relevant doses cause low-grade intestinal inflammation, microbiota dysbiosis, and alterations in gene expression in brain areas that mediate behavioral and neuroendocrine responses to stress-provoking stimuli.</div></div><div><h3>Methods</h3><div>To test whether emulsifier exposure sensitizes behavioral, hormonal, and neuronal responses to stress, C57BL/6 J male mice were given water +1 % emulsifier (CMC or P80) or water alone for 12 weeks after which they were exposed to social defeat stress. We previously found increased PTGS2 (COX-2) gene expression in the amygdala following emulsifier consumption. To determine whether inflammation, potentially through the COX pathway, is a potential mechanism driving emulsifier-induced increases in stress sensitivity, we administered the COX inhibitor aspirin (25 mg/kg/day) in conjunction with emulsifiers for the last six weeks of treatment.</div></div><div><h3>Results</h3><div>In defeated mice, CMC increased circulating corticosterone, while both emulsifiers increased social avoidance behavior and altered defeat-induced c-Fos immunofluorescence in various brain regions. Moreover, behavioral and hormonal alterations were attenuated by aspirin.</div></div><div><h3>Conclusions</h3><div>These data demonstrate that ingestion of at least some dietary emulsifiers at concentrations analogous to those ingested by humans increases sensitivity to social stress in mice and that the COX pathway may be a mechanistic candidate by which emulsifier-induced increases in sensitivity to social stress occur.</div></div>\",\"PeriodicalId\":13001,\"journal\":{\"name\":\"Hormones and Behavior\",\"volume\":\"172 \",\"pages\":\"Article 105750\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hormones and Behavior\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0018506X25000765\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hormones and Behavior","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0018506X25000765","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
Consumption of dietary emulsifiers increases sensitivity to social stress in mice: A potential role for the COX molecular pathway
Background
Chronic low-grade inflammation and exposure to stress are key contributing factors in the etiology and progression of many neuropsychiatric disorders. Dietary emulsifiers, such as carboxymethylcellulose (CMC) and polysorbate-80 (P80), are commonly added to processed foods and drinks and are classified by the Food and Drug Administration (FDA) as generally recognized as safe (GRAS). Recently, however, we and others have reported that these additives at translationally relevant doses cause low-grade intestinal inflammation, microbiota dysbiosis, and alterations in gene expression in brain areas that mediate behavioral and neuroendocrine responses to stress-provoking stimuli.
Methods
To test whether emulsifier exposure sensitizes behavioral, hormonal, and neuronal responses to stress, C57BL/6 J male mice were given water +1 % emulsifier (CMC or P80) or water alone for 12 weeks after which they were exposed to social defeat stress. We previously found increased PTGS2 (COX-2) gene expression in the amygdala following emulsifier consumption. To determine whether inflammation, potentially through the COX pathway, is a potential mechanism driving emulsifier-induced increases in stress sensitivity, we administered the COX inhibitor aspirin (25 mg/kg/day) in conjunction with emulsifiers for the last six weeks of treatment.
Results
In defeated mice, CMC increased circulating corticosterone, while both emulsifiers increased social avoidance behavior and altered defeat-induced c-Fos immunofluorescence in various brain regions. Moreover, behavioral and hormonal alterations were attenuated by aspirin.
Conclusions
These data demonstrate that ingestion of at least some dietary emulsifiers at concentrations analogous to those ingested by humans increases sensitivity to social stress in mice and that the COX pathway may be a mechanistic candidate by which emulsifier-induced increases in sensitivity to social stress occur.
期刊介绍:
Hormones and Behavior publishes original research articles, reviews and special issues concerning hormone-brain-behavior relationships, broadly defined. The journal''s scope ranges from laboratory and field studies concerning neuroendocrine as well as endocrine mechanisms controlling the development or adult expression of behavior to studies concerning the environmental control and evolutionary significance of hormone-behavior relationships. The journal welcomes studies conducted on species ranging from invertebrates to mammals, including humans.