一类新的z值INAR(1)模型及其在共同基金流动中的应用

IF 2.1 4区 经济学 Q2 ECONOMICS
Yao Kang , Yuqing Zhang , Shuhui Wang , Zhiwen Zhao
{"title":"一类新的z值INAR(1)模型及其在共同基金流动中的应用","authors":"Yao Kang ,&nbsp;Yuqing Zhang ,&nbsp;Shuhui Wang ,&nbsp;Zhiwen Zhao","doi":"10.1016/j.econlet.2025.112339","DOIUrl":null,"url":null,"abstract":"<div><div><span><math><mi>Z</mi></math></span>-valued time series, which have discrete and quantitative observations on the set <span><math><mrow><mi>Z</mi><mo>=</mo><mrow><mo>{</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mo>−</mo><mn>2</mn><mo>,</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>}</mo></mrow></mrow></math></span>, are commonly observed in economics and finance. <span><math><mi>Z</mi></math></span>-valued versions of integer-valued autoregressive (INAR) models are frequently employed to fit <span><math><mi>Z</mi></math></span>-valued time series. However, the existing <span><math><mi>Z</mi></math></span>-valued INAR models encounter difficulties in data generation mechanism and statistical inference. To enhance the modeling and prediction of <span><math><mi>Z</mi></math></span>-valued time series, this article constructs a class of <span><math><mi>Z</mi></math></span>-valued INAR(1) models from a new perspective and studies the related statistical inference problem. Empirically, an application to mutual fund flows demonstrates that our model offers satisfactory performance in economics and finance.</div></div>","PeriodicalId":11468,"journal":{"name":"Economics Letters","volume":"252 ","pages":"Article 112339"},"PeriodicalIF":2.1000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new class of Z-valued INAR(1) models with application to mutual fund flows\",\"authors\":\"Yao Kang ,&nbsp;Yuqing Zhang ,&nbsp;Shuhui Wang ,&nbsp;Zhiwen Zhao\",\"doi\":\"10.1016/j.econlet.2025.112339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><span><math><mi>Z</mi></math></span>-valued time series, which have discrete and quantitative observations on the set <span><math><mrow><mi>Z</mi><mo>=</mo><mrow><mo>{</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mo>−</mo><mn>2</mn><mo>,</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>}</mo></mrow></mrow></math></span>, are commonly observed in economics and finance. <span><math><mi>Z</mi></math></span>-valued versions of integer-valued autoregressive (INAR) models are frequently employed to fit <span><math><mi>Z</mi></math></span>-valued time series. However, the existing <span><math><mi>Z</mi></math></span>-valued INAR models encounter difficulties in data generation mechanism and statistical inference. To enhance the modeling and prediction of <span><math><mi>Z</mi></math></span>-valued time series, this article constructs a class of <span><math><mi>Z</mi></math></span>-valued INAR(1) models from a new perspective and studies the related statistical inference problem. Empirically, an application to mutual fund flows demonstrates that our model offers satisfactory performance in economics and finance.</div></div>\",\"PeriodicalId\":11468,\"journal\":{\"name\":\"Economics Letters\",\"volume\":\"252 \",\"pages\":\"Article 112339\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Economics Letters\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165176525001764\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Economics Letters","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165176525001764","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

Z值时间序列,在集合Z={…,−2,−1,0,1,2,…},在经济和金融中很常见。整数自回归(INAR)模型的z值版本经常被用来拟合z值时间序列。然而,现有的z值INAR模型在数据生成机制和统计推断方面存在困难。为了增强z值时间序列的建模和预测能力,本文从一个新的角度构建了一类z值的INAR(1)模型,并研究了相关的统计推断问题。通过对共同基金流动的实证分析表明,该模型在经济学和金融学上都具有令人满意的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new class of Z-valued INAR(1) models with application to mutual fund flows
Z-valued time series, which have discrete and quantitative observations on the set Z={...,2,1,0,1,2,}, are commonly observed in economics and finance. Z-valued versions of integer-valued autoregressive (INAR) models are frequently employed to fit Z-valued time series. However, the existing Z-valued INAR models encounter difficulties in data generation mechanism and statistical inference. To enhance the modeling and prediction of Z-valued time series, this article constructs a class of Z-valued INAR(1) models from a new perspective and studies the related statistical inference problem. Empirically, an application to mutual fund flows demonstrates that our model offers satisfactory performance in economics and finance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Economics Letters
Economics Letters ECONOMICS-
CiteScore
3.20
自引率
5.00%
发文量
348
审稿时长
30 days
期刊介绍: Many economists today are concerned by the proliferation of journals and the concomitant labyrinth of research to be conquered in order to reach the specific information they require. To combat this tendency, Economics Letters has been conceived and designed outside the realm of the traditional economics journal. As a Letters Journal, it consists of concise communications (letters) that provide a means of rapid and efficient dissemination of new results, models and methods in all fields of economic research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信