一种新的一阶核的减少偏差的长期方差估计器

IF 2.1 4区 经济学 Q2 ECONOMICS
Jingjing Yang , Timothy J. Vogelsang
{"title":"一种新的一阶核的减少偏差的长期方差估计器","authors":"Jingjing Yang ,&nbsp;Timothy J. Vogelsang","doi":"10.1016/j.econlet.2025.112340","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a theoretical analysis of a bias-reduced long run variance (LRV) estimator in a simple location model with unknown mean. This LRV estimator uses a new kernel expressed as a weighted sum of two characteristic exponent <span><math><mrow><mi>q</mi><mo>=</mo><mn>1</mn></mrow></math></span> kernels to approximate the estimator proposed by Yang and Vogelsang (2018). This new kernel effectively reduces biases from autocovariance estimation and kernel downweighting, addressing the Parzen bias missed by fixed-bandwidth asymptotics. When applied to testing the mean in a simple location model, the bias reduced approach improves the size-power tradeoff in <span><math><mi>t</mi></math></span>-tests in finite samples, reducing over-rejections faster than power loss as the bandwidth increases. The new kernel requires a smaller bandwidth than the Bartlett kernel under serial correlated errors to achieve the same null rejection probability. Smaller bandwidths also ensure positive semi-definiteness of this bias reduced LRV estimator for the bandwidths that optimize the testing’s size and power tradeoff in finite samples. A comparison with the Bartlett, quadratic spectral, and EWC estimators demonstrates the benefits of the proposed nearly unbiased method in hypothesis testing.</div></div>","PeriodicalId":11468,"journal":{"name":"Economics Letters","volume":"252 ","pages":"Article 112340"},"PeriodicalIF":2.1000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A bias reduced long run variance estimator with a new first-order kernel\",\"authors\":\"Jingjing Yang ,&nbsp;Timothy J. Vogelsang\",\"doi\":\"10.1016/j.econlet.2025.112340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a theoretical analysis of a bias-reduced long run variance (LRV) estimator in a simple location model with unknown mean. This LRV estimator uses a new kernel expressed as a weighted sum of two characteristic exponent <span><math><mrow><mi>q</mi><mo>=</mo><mn>1</mn></mrow></math></span> kernels to approximate the estimator proposed by Yang and Vogelsang (2018). This new kernel effectively reduces biases from autocovariance estimation and kernel downweighting, addressing the Parzen bias missed by fixed-bandwidth asymptotics. When applied to testing the mean in a simple location model, the bias reduced approach improves the size-power tradeoff in <span><math><mi>t</mi></math></span>-tests in finite samples, reducing over-rejections faster than power loss as the bandwidth increases. The new kernel requires a smaller bandwidth than the Bartlett kernel under serial correlated errors to achieve the same null rejection probability. Smaller bandwidths also ensure positive semi-definiteness of this bias reduced LRV estimator for the bandwidths that optimize the testing’s size and power tradeoff in finite samples. A comparison with the Bartlett, quadratic spectral, and EWC estimators demonstrates the benefits of the proposed nearly unbiased method in hypothesis testing.</div></div>\",\"PeriodicalId\":11468,\"journal\":{\"name\":\"Economics Letters\",\"volume\":\"252 \",\"pages\":\"Article 112340\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Economics Letters\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165176525001776\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Economics Letters","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165176525001776","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

本文对具有未知均值的简单位置模型的LRV估计量进行了理论分析。该LRV估计器使用一个新的核,表示为两个特征指数q=1核的加权和,以近似Yang和Vogelsang(2018)提出的估计器。这种新核有效地减少了自协方差估计和核降权的偏差,解决了固定带宽渐近所遗漏的Parzen偏差。当应用于测试简单位置模型中的平均值时,减少偏差的方法改善了有限样本中t检验的大小-功率权衡,随着带宽的增加,比功率损失更快地减少了过度拒绝。在串行相关误差下,新核比Bartlett核需要更小的带宽来实现相同的零拒绝概率。较小的带宽也确保了这种偏置减少的LRV估计器的正半确定性,用于优化有限样本中测试的大小和功率权衡的带宽。与Bartlett、二次谱和EWC估计量的比较表明了所提出的近乎无偏方法在假设检验中的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A bias reduced long run variance estimator with a new first-order kernel
This paper presents a theoretical analysis of a bias-reduced long run variance (LRV) estimator in a simple location model with unknown mean. This LRV estimator uses a new kernel expressed as a weighted sum of two characteristic exponent q=1 kernels to approximate the estimator proposed by Yang and Vogelsang (2018). This new kernel effectively reduces biases from autocovariance estimation and kernel downweighting, addressing the Parzen bias missed by fixed-bandwidth asymptotics. When applied to testing the mean in a simple location model, the bias reduced approach improves the size-power tradeoff in t-tests in finite samples, reducing over-rejections faster than power loss as the bandwidth increases. The new kernel requires a smaller bandwidth than the Bartlett kernel under serial correlated errors to achieve the same null rejection probability. Smaller bandwidths also ensure positive semi-definiteness of this bias reduced LRV estimator for the bandwidths that optimize the testing’s size and power tradeoff in finite samples. A comparison with the Bartlett, quadratic spectral, and EWC estimators demonstrates the benefits of the proposed nearly unbiased method in hypothesis testing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Economics Letters
Economics Letters ECONOMICS-
CiteScore
3.20
自引率
5.00%
发文量
348
审稿时长
30 days
期刊介绍: Many economists today are concerned by the proliferation of journals and the concomitant labyrinth of research to be conquered in order to reach the specific information they require. To combat this tendency, Economics Letters has been conceived and designed outside the realm of the traditional economics journal. As a Letters Journal, it consists of concise communications (letters) that provide a means of rapid and efficient dissemination of new results, models and methods in all fields of economic research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信