6fda基膜分离CO2气体的研究进展与挑战

Mehtab Ali Darban , Serene Sow Mun Lock , Suhaib Umer Ilyas , Sharjeel Waqas , Lam Ghai Lim , Irene Sow Mei Lock , Dun-Yen Kang , Mohd Hafiz Dzarfan Othman , Chung Loong Yiin , Noor e Hira , Zunara Bashir
{"title":"6fda基膜分离CO2气体的研究进展与挑战","authors":"Mehtab Ali Darban ,&nbsp;Serene Sow Mun Lock ,&nbsp;Suhaib Umer Ilyas ,&nbsp;Sharjeel Waqas ,&nbsp;Lam Ghai Lim ,&nbsp;Irene Sow Mei Lock ,&nbsp;Dun-Yen Kang ,&nbsp;Mohd Hafiz Dzarfan Othman ,&nbsp;Chung Loong Yiin ,&nbsp;Noor e Hira ,&nbsp;Zunara Bashir","doi":"10.1016/j.ccst.2025.100423","DOIUrl":null,"url":null,"abstract":"<div><div>Membrane technology is at the cutting edge of gas separation, offering energy-efficient and scalable solutions across industries. This review analyses 4,4′-(hexafluoroisopropylidene) diphthalic anhydride (6FDA)-based polyimides, emphasising their vital role in CO<sub>2</sub> gas separation. It discusses recent advancements and highlights their characteristics: high free volume, thermal stability, and chemical resistance, making them ideal for efficient gas separation. The review also covers fabrication methods for 6FDA-derived membranes, including composite and hybrid types with superior performance. It further examines recent advancements in 6FDA-based polymeric membranes, particularly mixed matrix membranes (MMMs) and hybrid architectures, with a focused discussion on polymer modifications such as thermal rearrangement and cross-linking, as well as the strategic integration of advanced fillers, including metal-organic frameworks (MOFs), zeolitic imidazolate frameworks (ZIFs), and ionic liquids (ILs). These advancements collectively contribute to enhanced membrane performance and expand their potential applications in gas separation technologies. For instance, adding 20 wt. % ZIF-67 to 6FDA-Durene significantly increased CO₂ permeability from 669.12 to 1529.86 Barrer. However, this enhancement came at the cost of a slight decrease in CO₂/N₂ and CO₂/CH₄ selectivities. In contrast, incorporating 20 wt. % [Emim][Tf₂N]@ZIF-67 improved CO₂ permeability by 33 %, while also increasing CO₂/N₂ selectivity from 25 to 28 and CO₂/CH₄ selectivity from 24 to 28. This highlights the superior performance of hybrid membranes over other composite formulations. The review highlights molecular simulations' critical role in revealing atomistic interactions and optimising filler-polymer interfaces, addressing scalability issues in experimental separations. These simulations provide insights for developing high-performance membranes. It also offers a comprehensive overview of current research and future directions by discussing experimental findings and molecular dynamics simulations. Additionally, it emphasises the potential of 6FDA-based membranes for industrial applications, indicating that advancements in filler modification and polymer design could help overcome existing challenges.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"15 ","pages":"Article 100423"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A critical review on advancements and challenges in CO2 gas separation via 6FDA-based membranes\",\"authors\":\"Mehtab Ali Darban ,&nbsp;Serene Sow Mun Lock ,&nbsp;Suhaib Umer Ilyas ,&nbsp;Sharjeel Waqas ,&nbsp;Lam Ghai Lim ,&nbsp;Irene Sow Mei Lock ,&nbsp;Dun-Yen Kang ,&nbsp;Mohd Hafiz Dzarfan Othman ,&nbsp;Chung Loong Yiin ,&nbsp;Noor e Hira ,&nbsp;Zunara Bashir\",\"doi\":\"10.1016/j.ccst.2025.100423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Membrane technology is at the cutting edge of gas separation, offering energy-efficient and scalable solutions across industries. This review analyses 4,4′-(hexafluoroisopropylidene) diphthalic anhydride (6FDA)-based polyimides, emphasising their vital role in CO<sub>2</sub> gas separation. It discusses recent advancements and highlights their characteristics: high free volume, thermal stability, and chemical resistance, making them ideal for efficient gas separation. The review also covers fabrication methods for 6FDA-derived membranes, including composite and hybrid types with superior performance. It further examines recent advancements in 6FDA-based polymeric membranes, particularly mixed matrix membranes (MMMs) and hybrid architectures, with a focused discussion on polymer modifications such as thermal rearrangement and cross-linking, as well as the strategic integration of advanced fillers, including metal-organic frameworks (MOFs), zeolitic imidazolate frameworks (ZIFs), and ionic liquids (ILs). These advancements collectively contribute to enhanced membrane performance and expand their potential applications in gas separation technologies. For instance, adding 20 wt. % ZIF-67 to 6FDA-Durene significantly increased CO₂ permeability from 669.12 to 1529.86 Barrer. However, this enhancement came at the cost of a slight decrease in CO₂/N₂ and CO₂/CH₄ selectivities. In contrast, incorporating 20 wt. % [Emim][Tf₂N]@ZIF-67 improved CO₂ permeability by 33 %, while also increasing CO₂/N₂ selectivity from 25 to 28 and CO₂/CH₄ selectivity from 24 to 28. This highlights the superior performance of hybrid membranes over other composite formulations. The review highlights molecular simulations' critical role in revealing atomistic interactions and optimising filler-polymer interfaces, addressing scalability issues in experimental separations. These simulations provide insights for developing high-performance membranes. It also offers a comprehensive overview of current research and future directions by discussing experimental findings and molecular dynamics simulations. Additionally, it emphasises the potential of 6FDA-based membranes for industrial applications, indicating that advancements in filler modification and polymer design could help overcome existing challenges.</div></div>\",\"PeriodicalId\":9387,\"journal\":{\"name\":\"Carbon Capture Science & Technology\",\"volume\":\"15 \",\"pages\":\"Article 100423\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Capture Science & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772656825000624\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772656825000624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

膜技术处于气体分离的前沿,为各行业提供节能和可扩展的解决方案。本文分析了4,4 ' -(六氟异丙基)二苯二酸酐(6FDA)基聚酰亚胺,强调了它们在CO2气体分离中的重要作用。它讨论了最近的进展,并强调了它们的特点:高自由体积,热稳定性和耐化学性,使它们成为高效气体分离的理想选择。综述了6fda衍生膜的制备方法,包括性能优越的复合膜和杂化膜。它进一步探讨了基于6fda的聚合物膜的最新进展,特别是混合基质膜(MMMs)和混合结构,重点讨论了聚合物修饰,如热重排和交联,以及先进填料的战略集成,包括金属有机框架(mfs),沸石咪唑酸框架(ZIFs)和离子液体(ILs)。这些进步共同有助于提高膜的性能,并扩大其在气体分离技术中的潜在应用。例如,在6FDA-Durene中加入20 wt. %的ZIF-67,可以显著提高CO₂渗透率,从669.12巴勒增加到1529.86巴勒。然而,这种增强是以CO₂/N₂和CO₂/CH₄选择性的轻微降低为代价的。相反,加入20 wt. % [Emim][Tf₂N]@ZIF-67可使CO₂渗透率提高33%,同时将CO₂/N₂选择性从25提高到28,将CO₂/CH _4选择性从24提高到28。这突出了杂交膜优于其他复合配方的优越性能。这篇综述强调了分子模拟在揭示原子相互作用、优化填料-聚合物界面、解决实验分离中的可扩展性问题方面的关键作用。这些模拟为开发高性能膜提供了见解。它还通过讨论实验结果和分子动力学模拟,提供了当前研究和未来方向的全面概述。此外,它强调了基于6fda的膜在工业应用中的潜力,表明填料改性和聚合物设计的进步可以帮助克服现有的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A critical review on advancements and challenges in CO2 gas separation via 6FDA-based membranes

A critical review on advancements and challenges in CO2 gas separation via 6FDA-based membranes
Membrane technology is at the cutting edge of gas separation, offering energy-efficient and scalable solutions across industries. This review analyses 4,4′-(hexafluoroisopropylidene) diphthalic anhydride (6FDA)-based polyimides, emphasising their vital role in CO2 gas separation. It discusses recent advancements and highlights their characteristics: high free volume, thermal stability, and chemical resistance, making them ideal for efficient gas separation. The review also covers fabrication methods for 6FDA-derived membranes, including composite and hybrid types with superior performance. It further examines recent advancements in 6FDA-based polymeric membranes, particularly mixed matrix membranes (MMMs) and hybrid architectures, with a focused discussion on polymer modifications such as thermal rearrangement and cross-linking, as well as the strategic integration of advanced fillers, including metal-organic frameworks (MOFs), zeolitic imidazolate frameworks (ZIFs), and ionic liquids (ILs). These advancements collectively contribute to enhanced membrane performance and expand their potential applications in gas separation technologies. For instance, adding 20 wt. % ZIF-67 to 6FDA-Durene significantly increased CO₂ permeability from 669.12 to 1529.86 Barrer. However, this enhancement came at the cost of a slight decrease in CO₂/N₂ and CO₂/CH₄ selectivities. In contrast, incorporating 20 wt. % [Emim][Tf₂N]@ZIF-67 improved CO₂ permeability by 33 %, while also increasing CO₂/N₂ selectivity from 25 to 28 and CO₂/CH₄ selectivity from 24 to 28. This highlights the superior performance of hybrid membranes over other composite formulations. The review highlights molecular simulations' critical role in revealing atomistic interactions and optimising filler-polymer interfaces, addressing scalability issues in experimental separations. These simulations provide insights for developing high-performance membranes. It also offers a comprehensive overview of current research and future directions by discussing experimental findings and molecular dynamics simulations. Additionally, it emphasises the potential of 6FDA-based membranes for industrial applications, indicating that advancements in filler modification and polymer design could help overcome existing challenges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信