Olatomide Gbenga Fadodun , Odunayo Olawuyi Fadodun , Amro H. Al-Tohamy , Amr Kaood
{"title":"不同几何参数波纹管中氧化铁/水纳米流体热液性能及不可逆性产率研究","authors":"Olatomide Gbenga Fadodun , Odunayo Olawuyi Fadodun , Amro H. Al-Tohamy , Amr Kaood","doi":"10.1016/j.ijthermalsci.2025.109964","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, hydrothermal performance and irreversibility production rate in ferrosoferric oxide (Fe<sub>3</sub>O<sub>4</sub>)/water nanofluid flowing in corrugated-converging pipes (CCPs) in turbulent flow regime have been examined. The ferrosoferric oxide (Fe<sub>3</sub>O<sub>4</sub>)/water nanofluid is modeled using discrete phase and <span><math><mrow><mi>k</mi><mo>−</mo><mi>ω</mi></mrow></math></span> turbulent models in Ansys Fluent. The impact of various factors on the Poiseuille number <span><math><mrow><mo>(</mo><mrow><mi>f</mi><mi>R</mi><mi>e</mi></mrow><mo>)</mo></mrow></math></span>, average Nusselt number <span><math><mrow><mo>(</mo><mrow><mi>N</mi><mi>u</mi></mrow><mo>)</mo></mrow></math></span>, performance evaluation criterion <span><math><mrow><mo>(</mo><mrow><mi>P</mi><mi>E</mi><mi>C</mi></mrow><mo>)</mo></mrow></math></span>, and irreversibility production rate are thoroughly examined. These factors include corrugation profiles (rectangular, trapezoidal, and spherical), Reynolds number <span><math><mrow><mo>(</mo><mrow><mn>5.0</mn><mo>×</mo><msup><mn>10</mn><mn>3</mn></msup><mo>≤</mo><mi>R</mi><mi>e</mi><mo>≤</mo><mn>3.0</mn><mo>×</mo><msup><mn>10</mn><mn>4</mn></msup></mrow><mo>)</mo></mrow></math></span>, normalized amplitude of corrugation (<span><math><mrow><mrow><mn>0.025</mn><mo>≤</mo><mfrac><mi>e</mi><mi>D</mi></mfrac><mo>≤</mo><mn>0.035</mn></mrow><mo>)</mo></mrow></math></span>, normalized width of corrugation (<span><math><mrow><mrow><mn>0.2</mn><mo>≤</mo><mfrac><mi>w</mi><mi>D</mi></mfrac><mo>≤</mo><mn>0.4</mn></mrow><mo>)</mo></mrow></math></span>, convergence diameter ratio (1.0 ≤ <em>DR</em> ≤ 2.0), and nanoparticles concentration (0.0 % ≤ <em>VR</em> ≤ 2.0 %). The findings revealed that the <span><math><mrow><mi>N</mi><mi>u</mi></mrow></math></span> in CCPs is higher than that of smooth pipes, albeit at the expense of increased <span><math><mrow><mi>f</mi><mi>R</mi><mi>e</mi></mrow></math></span>. For instance, at <span><math><mrow><mi>R</mi><mi>e</mi><mo>=</mo><msup><mn>10</mn><mn>4</mn></msup></mrow></math></span>, <span><math><mrow><mi>V</mi><mi>R</mi><mo>=</mo><mn>1</mn><mo>%</mo><mo>,</mo><mi>D</mi><mi>R</mi><mo>=</mo><mn>2.0</mn><mo>,</mo><mfrac><mi>e</mi><mi>D</mi></mfrac><mo>=</mo><mn>0.025</mn><mo>,</mo><mi>a</mi><mi>n</mi><mi>d</mi><mspace></mspace><mfrac><mi>w</mi><mi>D</mi></mfrac><mo>=</mo><mn>0.4</mn></mrow></math></span>, the values of <span><math><mrow><mi>N</mi><mi>u</mi></mrow></math></span> and <span><math><mrow><mi>f</mi><mi>R</mi><mi>e</mi></mrow></math></span> for rectangular, trapezoidal, and spherical CCPs and smooth straight pipe, which serves as the reference pipe (RP), are {156.96, 153.34, 137.00, and 103.35} and {13938.44, 11335.35, 7537.07, and 551.71}, respectively. In addition, it was found that, when compared to RP, the average volumetric entropy production rate due to the temperature gradient <span><math><mrow><mo>⟨</mo><msubsup><mi>S</mi><mrow><mi>t</mi><mi>h</mi></mrow><mo>‴</mo></msubsup><mo>⟩</mo></mrow></math></span> in modified pipes was lower. Furthermore, an increase in certain geometric parameters (<em>DR</em> and <span><math><mrow><mfrac><mi>e</mi><mi>D</mi></mfrac></mrow></math></span>) increased <span><math><mrow><mi>N</mi><mi>u</mi></mrow></math></span>, <span><math><mrow><mi>f</mi><mi>R</mi><mi>e</mi></mrow></math></span>, and the viscous volume-average entropy production rate <span><math><mrow><mo>⟨</mo><msubsup><mi>S</mi><mrow><mi>v</mi><mi>i</mi><mi>s</mi><mi>c</mi></mrow><mo>‴</mo></msubsup><mo>⟩</mo></mrow></math></span>. However, the opposite was observed for <span><math><mrow><mfrac><mi>w</mi><mi>D</mi></mfrac></mrow></math></span>. Thus, from an energy-saving perspective, CCPs can be suggested as a promising heat transfer enhancement method, especially the trapezoidal CCP.</div></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":"215 ","pages":"Article 109964"},"PeriodicalIF":4.9000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of hydrothermal performance and irreversibility production rate of ferrosoferric oxide/water nanofluid in corrugated-converging pipes with varying geometry parameters\",\"authors\":\"Olatomide Gbenga Fadodun , Odunayo Olawuyi Fadodun , Amro H. Al-Tohamy , Amr Kaood\",\"doi\":\"10.1016/j.ijthermalsci.2025.109964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, hydrothermal performance and irreversibility production rate in ferrosoferric oxide (Fe<sub>3</sub>O<sub>4</sub>)/water nanofluid flowing in corrugated-converging pipes (CCPs) in turbulent flow regime have been examined. The ferrosoferric oxide (Fe<sub>3</sub>O<sub>4</sub>)/water nanofluid is modeled using discrete phase and <span><math><mrow><mi>k</mi><mo>−</mo><mi>ω</mi></mrow></math></span> turbulent models in Ansys Fluent. The impact of various factors on the Poiseuille number <span><math><mrow><mo>(</mo><mrow><mi>f</mi><mi>R</mi><mi>e</mi></mrow><mo>)</mo></mrow></math></span>, average Nusselt number <span><math><mrow><mo>(</mo><mrow><mi>N</mi><mi>u</mi></mrow><mo>)</mo></mrow></math></span>, performance evaluation criterion <span><math><mrow><mo>(</mo><mrow><mi>P</mi><mi>E</mi><mi>C</mi></mrow><mo>)</mo></mrow></math></span>, and irreversibility production rate are thoroughly examined. These factors include corrugation profiles (rectangular, trapezoidal, and spherical), Reynolds number <span><math><mrow><mo>(</mo><mrow><mn>5.0</mn><mo>×</mo><msup><mn>10</mn><mn>3</mn></msup><mo>≤</mo><mi>R</mi><mi>e</mi><mo>≤</mo><mn>3.0</mn><mo>×</mo><msup><mn>10</mn><mn>4</mn></msup></mrow><mo>)</mo></mrow></math></span>, normalized amplitude of corrugation (<span><math><mrow><mrow><mn>0.025</mn><mo>≤</mo><mfrac><mi>e</mi><mi>D</mi></mfrac><mo>≤</mo><mn>0.035</mn></mrow><mo>)</mo></mrow></math></span>, normalized width of corrugation (<span><math><mrow><mrow><mn>0.2</mn><mo>≤</mo><mfrac><mi>w</mi><mi>D</mi></mfrac><mo>≤</mo><mn>0.4</mn></mrow><mo>)</mo></mrow></math></span>, convergence diameter ratio (1.0 ≤ <em>DR</em> ≤ 2.0), and nanoparticles concentration (0.0 % ≤ <em>VR</em> ≤ 2.0 %). The findings revealed that the <span><math><mrow><mi>N</mi><mi>u</mi></mrow></math></span> in CCPs is higher than that of smooth pipes, albeit at the expense of increased <span><math><mrow><mi>f</mi><mi>R</mi><mi>e</mi></mrow></math></span>. For instance, at <span><math><mrow><mi>R</mi><mi>e</mi><mo>=</mo><msup><mn>10</mn><mn>4</mn></msup></mrow></math></span>, <span><math><mrow><mi>V</mi><mi>R</mi><mo>=</mo><mn>1</mn><mo>%</mo><mo>,</mo><mi>D</mi><mi>R</mi><mo>=</mo><mn>2.0</mn><mo>,</mo><mfrac><mi>e</mi><mi>D</mi></mfrac><mo>=</mo><mn>0.025</mn><mo>,</mo><mi>a</mi><mi>n</mi><mi>d</mi><mspace></mspace><mfrac><mi>w</mi><mi>D</mi></mfrac><mo>=</mo><mn>0.4</mn></mrow></math></span>, the values of <span><math><mrow><mi>N</mi><mi>u</mi></mrow></math></span> and <span><math><mrow><mi>f</mi><mi>R</mi><mi>e</mi></mrow></math></span> for rectangular, trapezoidal, and spherical CCPs and smooth straight pipe, which serves as the reference pipe (RP), are {156.96, 153.34, 137.00, and 103.35} and {13938.44, 11335.35, 7537.07, and 551.71}, respectively. In addition, it was found that, when compared to RP, the average volumetric entropy production rate due to the temperature gradient <span><math><mrow><mo>⟨</mo><msubsup><mi>S</mi><mrow><mi>t</mi><mi>h</mi></mrow><mo>‴</mo></msubsup><mo>⟩</mo></mrow></math></span> in modified pipes was lower. Furthermore, an increase in certain geometric parameters (<em>DR</em> and <span><math><mrow><mfrac><mi>e</mi><mi>D</mi></mfrac></mrow></math></span>) increased <span><math><mrow><mi>N</mi><mi>u</mi></mrow></math></span>, <span><math><mrow><mi>f</mi><mi>R</mi><mi>e</mi></mrow></math></span>, and the viscous volume-average entropy production rate <span><math><mrow><mo>⟨</mo><msubsup><mi>S</mi><mrow><mi>v</mi><mi>i</mi><mi>s</mi><mi>c</mi></mrow><mo>‴</mo></msubsup><mo>⟩</mo></mrow></math></span>. However, the opposite was observed for <span><math><mrow><mfrac><mi>w</mi><mi>D</mi></mfrac></mrow></math></span>. Thus, from an energy-saving perspective, CCPs can be suggested as a promising heat transfer enhancement method, especially the trapezoidal CCP.</div></div>\",\"PeriodicalId\":341,\"journal\":{\"name\":\"International Journal of Thermal Sciences\",\"volume\":\"215 \",\"pages\":\"Article 109964\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermal Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S129007292500287X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S129007292500287X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Investigation of hydrothermal performance and irreversibility production rate of ferrosoferric oxide/water nanofluid in corrugated-converging pipes with varying geometry parameters
In this study, hydrothermal performance and irreversibility production rate in ferrosoferric oxide (Fe3O4)/water nanofluid flowing in corrugated-converging pipes (CCPs) in turbulent flow regime have been examined. The ferrosoferric oxide (Fe3O4)/water nanofluid is modeled using discrete phase and turbulent models in Ansys Fluent. The impact of various factors on the Poiseuille number , average Nusselt number , performance evaluation criterion , and irreversibility production rate are thoroughly examined. These factors include corrugation profiles (rectangular, trapezoidal, and spherical), Reynolds number , normalized amplitude of corrugation (, normalized width of corrugation (, convergence diameter ratio (1.0 ≤ DR ≤ 2.0), and nanoparticles concentration (0.0 % ≤ VR ≤ 2.0 %). The findings revealed that the in CCPs is higher than that of smooth pipes, albeit at the expense of increased . For instance, at , , the values of and for rectangular, trapezoidal, and spherical CCPs and smooth straight pipe, which serves as the reference pipe (RP), are {156.96, 153.34, 137.00, and 103.35} and {13938.44, 11335.35, 7537.07, and 551.71}, respectively. In addition, it was found that, when compared to RP, the average volumetric entropy production rate due to the temperature gradient in modified pipes was lower. Furthermore, an increase in certain geometric parameters (DR and ) increased , , and the viscous volume-average entropy production rate . However, the opposite was observed for . Thus, from an energy-saving perspective, CCPs can be suggested as a promising heat transfer enhancement method, especially the trapezoidal CCP.
期刊介绍:
The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review.
The fundamental subjects considered within the scope of the journal are:
* Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow
* Forced, natural or mixed convection in reactive or non-reactive media
* Single or multi–phase fluid flow with or without phase change
* Near–and far–field radiative heat transfer
* Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...)
* Multiscale modelling
The applied research topics include:
* Heat exchangers, heat pipes, cooling processes
* Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries)
* Nano–and micro–technology for energy, space, biosystems and devices
* Heat transport analysis in advanced systems
* Impact of energy–related processes on environment, and emerging energy systems
The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.