Gabriel R. Barrenechea , Tristan Pryer , Alex Trenam
{"title":"漂移扩散方程的节点保界不连续Galerkin方法","authors":"Gabriel R. Barrenechea , Tristan Pryer , Alex Trenam","doi":"10.1016/j.cam.2025.116670","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we introduce and analyse discontinuous Galerkin (dG) methods for the drift–diffusion model. We explore two dG formulations: a classical interior penalty approach and a nodally bound-preserving method. Whilst the interior penalty method demonstrates well-posedness and convergence, it fails to guarantee non-negativity of the solution. To address this deficit, which is often important to ensure in applications, we employ a positivity-preserving method based on a convex subset formulation, ensuring the non-negativity of the solution at the Lagrange nodes. We validate our findings by summarising extensive numerical experiments, highlighting the novelty and effectiveness of our approach in handling the complexities of charge carrier transport.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"470 ","pages":"Article 116670"},"PeriodicalIF":2.1000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A nodally bound-preserving discontinuous Galerkin method for the drift–diffusion equation\",\"authors\":\"Gabriel R. Barrenechea , Tristan Pryer , Alex Trenam\",\"doi\":\"10.1016/j.cam.2025.116670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, we introduce and analyse discontinuous Galerkin (dG) methods for the drift–diffusion model. We explore two dG formulations: a classical interior penalty approach and a nodally bound-preserving method. Whilst the interior penalty method demonstrates well-posedness and convergence, it fails to guarantee non-negativity of the solution. To address this deficit, which is often important to ensure in applications, we employ a positivity-preserving method based on a convex subset formulation, ensuring the non-negativity of the solution at the Lagrange nodes. We validate our findings by summarising extensive numerical experiments, highlighting the novelty and effectiveness of our approach in handling the complexities of charge carrier transport.</div></div>\",\"PeriodicalId\":50226,\"journal\":{\"name\":\"Journal of Computational and Applied Mathematics\",\"volume\":\"470 \",\"pages\":\"Article 116670\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042725001840\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042725001840","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A nodally bound-preserving discontinuous Galerkin method for the drift–diffusion equation
In this work, we introduce and analyse discontinuous Galerkin (dG) methods for the drift–diffusion model. We explore two dG formulations: a classical interior penalty approach and a nodally bound-preserving method. Whilst the interior penalty method demonstrates well-posedness and convergence, it fails to guarantee non-negativity of the solution. To address this deficit, which is often important to ensure in applications, we employ a positivity-preserving method based on a convex subset formulation, ensuring the non-negativity of the solution at the Lagrange nodes. We validate our findings by summarising extensive numerical experiments, highlighting the novelty and effectiveness of our approach in handling the complexities of charge carrier transport.
期刊介绍:
The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest.
The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.