{"title":"高性能声流器件数字间换能器参数优化","authors":"Yong Wang , Ban Wang , Luoke Hu , Jingui Qian","doi":"10.1016/j.ultras.2025.107677","DOIUrl":null,"url":null,"abstract":"<div><div>Microfluidic actuators based on surface acoustic waves (SAWs) typically operate at frequencies below 100 MHz, often neglecting the effect of interdigital transducer (IDT) parameters on device size, cost, and actuation performance. In this paper, we aim to optimize IDT parameters to improve fluidic actuation performance while maintaining a compact size, thereby enhancing the space utilization and reducing manufacturing cost. We systematically investigate the effects of IDT parameters, including wavelength, acoustic aperture, and the number of electrode pairs on fluidic actuation and explore the underlying mechanisms. Results show that increasing the number of electrode pairs and wavelength, or reducing the acoustic aperture width, enhances fluidic actuation performance. Additionally, fluid behaviors vary significantly with frequency. Above 80 MHz, the droplet pumping exhibits a jumping motion that requires a higher power, while jetting resembles the launch of liquid droplet projectile. Below 62 MHz, the droplet pumping combines a rolling and sliding motion, with jetting following a continuous water column along the Rayleigh angle. Moreover, the ejected liquid column size is determined by the acoustic aperture width when the droplet size exceeds the aperture width. Based on these findings, we propose an optimized IDT design guideline: a wavelength range of 64 to 80 µm, 40 to 60 electrode pairs, and an acoustic aperture width of 4 to 6 mm, to achieve optimal fluidic actuation performance while maintaining a compact size for most biomedical applications.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"153 ","pages":"Article 107677"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameter optimization of interdigital transducers for high-performance acoustofluidic devices\",\"authors\":\"Yong Wang , Ban Wang , Luoke Hu , Jingui Qian\",\"doi\":\"10.1016/j.ultras.2025.107677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Microfluidic actuators based on surface acoustic waves (SAWs) typically operate at frequencies below 100 MHz, often neglecting the effect of interdigital transducer (IDT) parameters on device size, cost, and actuation performance. In this paper, we aim to optimize IDT parameters to improve fluidic actuation performance while maintaining a compact size, thereby enhancing the space utilization and reducing manufacturing cost. We systematically investigate the effects of IDT parameters, including wavelength, acoustic aperture, and the number of electrode pairs on fluidic actuation and explore the underlying mechanisms. Results show that increasing the number of electrode pairs and wavelength, or reducing the acoustic aperture width, enhances fluidic actuation performance. Additionally, fluid behaviors vary significantly with frequency. Above 80 MHz, the droplet pumping exhibits a jumping motion that requires a higher power, while jetting resembles the launch of liquid droplet projectile. Below 62 MHz, the droplet pumping combines a rolling and sliding motion, with jetting following a continuous water column along the Rayleigh angle. Moreover, the ejected liquid column size is determined by the acoustic aperture width when the droplet size exceeds the aperture width. Based on these findings, we propose an optimized IDT design guideline: a wavelength range of 64 to 80 µm, 40 to 60 electrode pairs, and an acoustic aperture width of 4 to 6 mm, to achieve optimal fluidic actuation performance while maintaining a compact size for most biomedical applications.</div></div>\",\"PeriodicalId\":23522,\"journal\":{\"name\":\"Ultrasonics\",\"volume\":\"153 \",\"pages\":\"Article 107677\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultrasonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0041624X25001143\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041624X25001143","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
Parameter optimization of interdigital transducers for high-performance acoustofluidic devices
Microfluidic actuators based on surface acoustic waves (SAWs) typically operate at frequencies below 100 MHz, often neglecting the effect of interdigital transducer (IDT) parameters on device size, cost, and actuation performance. In this paper, we aim to optimize IDT parameters to improve fluidic actuation performance while maintaining a compact size, thereby enhancing the space utilization and reducing manufacturing cost. We systematically investigate the effects of IDT parameters, including wavelength, acoustic aperture, and the number of electrode pairs on fluidic actuation and explore the underlying mechanisms. Results show that increasing the number of electrode pairs and wavelength, or reducing the acoustic aperture width, enhances fluidic actuation performance. Additionally, fluid behaviors vary significantly with frequency. Above 80 MHz, the droplet pumping exhibits a jumping motion that requires a higher power, while jetting resembles the launch of liquid droplet projectile. Below 62 MHz, the droplet pumping combines a rolling and sliding motion, with jetting following a continuous water column along the Rayleigh angle. Moreover, the ejected liquid column size is determined by the acoustic aperture width when the droplet size exceeds the aperture width. Based on these findings, we propose an optimized IDT design guideline: a wavelength range of 64 to 80 µm, 40 to 60 electrode pairs, and an acoustic aperture width of 4 to 6 mm, to achieve optimal fluidic actuation performance while maintaining a compact size for most biomedical applications.
期刊介绍:
Ultrasonics is the only internationally established journal which covers the entire field of ultrasound research and technology and all its many applications. Ultrasonics contains a variety of sections to keep readers fully informed and up-to-date on the whole spectrum of research and development throughout the world. Ultrasonics publishes papers of exceptional quality and of relevance to both academia and industry. Manuscripts in which ultrasonics is a central issue and not simply an incidental tool or minor issue, are welcomed.
As well as top quality original research papers and review articles by world renowned experts, Ultrasonics also regularly features short communications, a calendar of forthcoming events and special issues dedicated to topical subjects.