{"title":"基于episisal载体的CRISPR/Cas9系统生成MYL3敲除干细胞系(WAe009-A-1H","authors":"Rui Bai , Wei Fu , Xiaojie Hou , Juyi Wan","doi":"10.1016/j.scr.2025.103723","DOIUrl":null,"url":null,"abstract":"<div><div>The Myosin light chain 3 (MYL3) gene encodes the ventricular essential light chain isoform, which is an important modulator of sarcomeric myosin cross-bridge kinetics. Variants in MYL3 are a cause of hypertrophic cardiomyopathy and dilated cardiomyopathy with cardiac failure and sudden cardiac death (SCD). To further elucidate the involvement of MYL3 in the pathogenesis of cardiomyopathies, we have created a MYL3 knockout human embryonic stem cell line using the CRISPR/Cas9 system. Notably, this MYL3-knockout cell line retains normal morphology, pluripotency, and karyotype. This resource provides a valuable tool for investigating MYL3-related health and disease.</div></div>","PeriodicalId":21843,"journal":{"name":"Stem cell research","volume":"86 ","pages":"Article 103723"},"PeriodicalIF":0.8000,"publicationDate":"2025-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generation of a MYL3 knockout stem cell line (WAe009-A-1H) by episomal vector-based CRISPR/Cas9 system\",\"authors\":\"Rui Bai , Wei Fu , Xiaojie Hou , Juyi Wan\",\"doi\":\"10.1016/j.scr.2025.103723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Myosin light chain 3 (MYL3) gene encodes the ventricular essential light chain isoform, which is an important modulator of sarcomeric myosin cross-bridge kinetics. Variants in MYL3 are a cause of hypertrophic cardiomyopathy and dilated cardiomyopathy with cardiac failure and sudden cardiac death (SCD). To further elucidate the involvement of MYL3 in the pathogenesis of cardiomyopathies, we have created a MYL3 knockout human embryonic stem cell line using the CRISPR/Cas9 system. Notably, this MYL3-knockout cell line retains normal morphology, pluripotency, and karyotype. This resource provides a valuable tool for investigating MYL3-related health and disease.</div></div>\",\"PeriodicalId\":21843,\"journal\":{\"name\":\"Stem cell research\",\"volume\":\"86 \",\"pages\":\"Article 103723\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem cell research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S187350612500073X\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem cell research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S187350612500073X","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Generation of a MYL3 knockout stem cell line (WAe009-A-1H) by episomal vector-based CRISPR/Cas9 system
The Myosin light chain 3 (MYL3) gene encodes the ventricular essential light chain isoform, which is an important modulator of sarcomeric myosin cross-bridge kinetics. Variants in MYL3 are a cause of hypertrophic cardiomyopathy and dilated cardiomyopathy with cardiac failure and sudden cardiac death (SCD). To further elucidate the involvement of MYL3 in the pathogenesis of cardiomyopathies, we have created a MYL3 knockout human embryonic stem cell line using the CRISPR/Cas9 system. Notably, this MYL3-knockout cell line retains normal morphology, pluripotency, and karyotype. This resource provides a valuable tool for investigating MYL3-related health and disease.
期刊介绍:
Stem Cell Research is dedicated to publishing high-quality manuscripts focusing on the biology and applications of stem cell research. Submissions to Stem Cell Research, may cover all aspects of stem cells, including embryonic stem cells, tissue-specific stem cells, cancer stem cells, developmental studies, stem cell genomes, and translational research. Stem Cell Research publishes 6 issues a year.