随机Schreier图的直径

IF 1 3区 数学 Q1 MATHEMATICS
Daniele Dona , Luca Sabatini
{"title":"随机Schreier图的直径","authors":"Daniele Dona ,&nbsp;Luca Sabatini","doi":"10.1016/j.ejc.2025.104164","DOIUrl":null,"url":null,"abstract":"<div><div>We give a combinatorial proof of the following theorem. Let <span><math><mi>G</mi></math></span> be any finite group acting transitively on a set of cardinality <span><math><mi>n</mi></math></span>. If <span><math><mrow><mi>S</mi><mo>⊆</mo><mi>G</mi></mrow></math></span> is a random set of size <span><math><mi>k</mi></math></span>, with <span><math><mrow><mi>k</mi><mo>≥</mo><msup><mrow><mrow><mo>(</mo><mo>log</mo><mi>n</mi><mo>)</mo></mrow></mrow><mrow><mn>1</mn><mo>+</mo><mi>ɛ</mi></mrow></msup></mrow></math></span> for some <span><math><mrow><mi>ɛ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>, then the diameter of the corresponding Schreier graph is <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msub><mrow><mo>log</mo></mrow><mrow><mi>k</mi></mrow></msub><mi>n</mi><mo>)</mo></mrow></mrow></math></span> with high probability. Except for the implicit constant, this result is the best possible.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"127 ","pages":"Article 104164"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The diameter of random Schreier graphs\",\"authors\":\"Daniele Dona ,&nbsp;Luca Sabatini\",\"doi\":\"10.1016/j.ejc.2025.104164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We give a combinatorial proof of the following theorem. Let <span><math><mi>G</mi></math></span> be any finite group acting transitively on a set of cardinality <span><math><mi>n</mi></math></span>. If <span><math><mrow><mi>S</mi><mo>⊆</mo><mi>G</mi></mrow></math></span> is a random set of size <span><math><mi>k</mi></math></span>, with <span><math><mrow><mi>k</mi><mo>≥</mo><msup><mrow><mrow><mo>(</mo><mo>log</mo><mi>n</mi><mo>)</mo></mrow></mrow><mrow><mn>1</mn><mo>+</mo><mi>ɛ</mi></mrow></msup></mrow></math></span> for some <span><math><mrow><mi>ɛ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>, then the diameter of the corresponding Schreier graph is <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msub><mrow><mo>log</mo></mrow><mrow><mi>k</mi></mrow></msub><mi>n</mi><mo>)</mo></mrow></mrow></math></span> with high probability. Except for the implicit constant, this result is the best possible.</div></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":\"127 \",\"pages\":\"Article 104164\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669825000472\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825000472","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们给出下列定理的一个组合证明。设G为传递作用于一个基数n的集合上的任意有限群。如果S≥(logn) G是一个大小为k的随机集合,且k≥(logn)1+ k,且对于某些k >;0,则对应的Schreier图的直径大概率为O(logkn)。除了隐式常数,这个结果是最好的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The diameter of random Schreier graphs
We give a combinatorial proof of the following theorem. Let G be any finite group acting transitively on a set of cardinality n. If SG is a random set of size k, with k(logn)1+ɛ for some ɛ>0, then the diameter of the corresponding Schreier graph is O(logkn) with high probability. Except for the implicit constant, this result is the best possible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信