精炼正则稳定格罗滕迪克多项式及其对偶,第2部分

IF 1 3区 数学 Q1 MATHEMATICS
Byung-Hak Hwang , Jihyeug Jang , Jang Soo Kim , Minho Song , U-Keun Song
{"title":"精炼正则稳定格罗滕迪克多项式及其对偶,第2部分","authors":"Byung-Hak Hwang ,&nbsp;Jihyeug Jang ,&nbsp;Jang Soo Kim ,&nbsp;Minho Song ,&nbsp;U-Keun Song","doi":"10.1016/j.ejc.2025.104166","DOIUrl":null,"url":null,"abstract":"<div><div>This paper is the sequel of the paper under the same title with part 1, where we introduced refined canonical stable Grothendieck polynomials and their duals with two families of infinite parameters. In this paper we give combinatorial interpretations for these polynomials using generalizations of set-valued tableaux and reverse plane partitions, respectively. Our results extend to their flagged and skew versions.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"127 ","pages":"Article 104166"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Refined canonical stable Grothendieck polynomials and their duals, Part 2\",\"authors\":\"Byung-Hak Hwang ,&nbsp;Jihyeug Jang ,&nbsp;Jang Soo Kim ,&nbsp;Minho Song ,&nbsp;U-Keun Song\",\"doi\":\"10.1016/j.ejc.2025.104166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper is the sequel of the paper under the same title with part 1, where we introduced refined canonical stable Grothendieck polynomials and their duals with two families of infinite parameters. In this paper we give combinatorial interpretations for these polynomials using generalizations of set-valued tableaux and reverse plane partitions, respectively. Our results extend to their flagged and skew versions.</div></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":\"127 \",\"pages\":\"Article 104166\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669825000496\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825000496","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文是第1部分的续篇,在第1部分中,我们引入了具有两个无穷参数族的精炼正则稳定格罗滕迪克多项式及其对偶。本文分别利用集值表和逆平面划分的推广给出了这些多项式的组合解释。我们的结果扩展到他们的标记和倾斜版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Refined canonical stable Grothendieck polynomials and their duals, Part 2
This paper is the sequel of the paper under the same title with part 1, where we introduced refined canonical stable Grothendieck polynomials and their duals with two families of infinite parameters. In this paper we give combinatorial interpretations for these polynomials using generalizations of set-valued tableaux and reverse plane partitions, respectively. Our results extend to their flagged and skew versions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信