Ke-han Qiu , Yu-jie Wang , Kai-li Cheng , Le-qi Jiang , Xuan Li , Jiu-liang Zhang
{"title":"花青素熊果苷共无定形配合物的制备、表征与分析及对酪氨酸酶抑制作用的评价","authors":"Ke-han Qiu , Yu-jie Wang , Kai-li Cheng , Le-qi Jiang , Xuan Li , Jiu-liang Zhang","doi":"10.1016/j.ijbiomac.2025.143600","DOIUrl":null,"url":null,"abstract":"<div><div>Natural phenolic compounds, such as anthocyanins and arbutin, have demonstrated significant potential as tyrosinase (TYR) inhibitors. However, the application of anthocyanins in biological systems is hindered by their instability under alkaline conditions, elevated temperatures, and light exposure. In contrast, arbutin exhibits superior stability while also functioning as a TYR inhibitor. To overcome these limitations, this study developed an Anthocyanin-α-Arbutin Co-amorphous (AAC) system aimed at enhancing both the stability of anthocyanins and their TYR inhibitory properties. Kinetic studies revealed that anthocyanins, arbutin, and AAC act as reversible mixed-type TYR inhibitors, with competitive inhibition as the predominant mechanism. Each compound exhibited distinct inhibition sites. Fluorescence analysis demonstrated that anthocyanins induce a fluorescence burst in TYR, likely attributed to Tyr residues, whereas α-arbutin and AAC enhance the fluorescence intensity of TYR. Moreover, α-arbutin and AAC were found to decrease the microenvironmental hydrophobicity surrounding tyrosine (Tyr) residues while increasing it around tryptophan (Trp) residues, suggesting potential conformational changes in tyrosinase. Molecular docking analysis indicated that hydrogen bonding and π-π stacking interactions occurred between anthocyanins and arbutin in the AAC system. Specifically, anthocyanins primarily interacted with TYR through π-π and π-alkyl interactions, while α-arbutin predominantly bound to TYR via hydrogen bonding. Consistent with the interaction study, α-arbutin was found to associate with tyrosinase mainly through hydrogen bonding and van der Waals forces. These findings provide novel insights into the interactions between anthocyanins and α-arbutin in the context of food science and lay a foundation for the development of innovative TYR inhibitors.</div></div>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":"311 ","pages":"Article 143600"},"PeriodicalIF":7.7000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation, characterization and analysis of anthocyanin arbutin co-amorphous complexes and evaluation of the inhibition of tyrosinase\",\"authors\":\"Ke-han Qiu , Yu-jie Wang , Kai-li Cheng , Le-qi Jiang , Xuan Li , Jiu-liang Zhang\",\"doi\":\"10.1016/j.ijbiomac.2025.143600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Natural phenolic compounds, such as anthocyanins and arbutin, have demonstrated significant potential as tyrosinase (TYR) inhibitors. However, the application of anthocyanins in biological systems is hindered by their instability under alkaline conditions, elevated temperatures, and light exposure. In contrast, arbutin exhibits superior stability while also functioning as a TYR inhibitor. To overcome these limitations, this study developed an Anthocyanin-α-Arbutin Co-amorphous (AAC) system aimed at enhancing both the stability of anthocyanins and their TYR inhibitory properties. Kinetic studies revealed that anthocyanins, arbutin, and AAC act as reversible mixed-type TYR inhibitors, with competitive inhibition as the predominant mechanism. Each compound exhibited distinct inhibition sites. Fluorescence analysis demonstrated that anthocyanins induce a fluorescence burst in TYR, likely attributed to Tyr residues, whereas α-arbutin and AAC enhance the fluorescence intensity of TYR. Moreover, α-arbutin and AAC were found to decrease the microenvironmental hydrophobicity surrounding tyrosine (Tyr) residues while increasing it around tryptophan (Trp) residues, suggesting potential conformational changes in tyrosinase. Molecular docking analysis indicated that hydrogen bonding and π-π stacking interactions occurred between anthocyanins and arbutin in the AAC system. Specifically, anthocyanins primarily interacted with TYR through π-π and π-alkyl interactions, while α-arbutin predominantly bound to TYR via hydrogen bonding. Consistent with the interaction study, α-arbutin was found to associate with tyrosinase mainly through hydrogen bonding and van der Waals forces. These findings provide novel insights into the interactions between anthocyanins and α-arbutin in the context of food science and lay a foundation for the development of innovative TYR inhibitors.</div></div>\",\"PeriodicalId\":333,\"journal\":{\"name\":\"International Journal of Biological Macromolecules\",\"volume\":\"311 \",\"pages\":\"Article 143600\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biological Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141813025041522\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141813025041522","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Preparation, characterization and analysis of anthocyanin arbutin co-amorphous complexes and evaluation of the inhibition of tyrosinase
Natural phenolic compounds, such as anthocyanins and arbutin, have demonstrated significant potential as tyrosinase (TYR) inhibitors. However, the application of anthocyanins in biological systems is hindered by their instability under alkaline conditions, elevated temperatures, and light exposure. In contrast, arbutin exhibits superior stability while also functioning as a TYR inhibitor. To overcome these limitations, this study developed an Anthocyanin-α-Arbutin Co-amorphous (AAC) system aimed at enhancing both the stability of anthocyanins and their TYR inhibitory properties. Kinetic studies revealed that anthocyanins, arbutin, and AAC act as reversible mixed-type TYR inhibitors, with competitive inhibition as the predominant mechanism. Each compound exhibited distinct inhibition sites. Fluorescence analysis demonstrated that anthocyanins induce a fluorescence burst in TYR, likely attributed to Tyr residues, whereas α-arbutin and AAC enhance the fluorescence intensity of TYR. Moreover, α-arbutin and AAC were found to decrease the microenvironmental hydrophobicity surrounding tyrosine (Tyr) residues while increasing it around tryptophan (Trp) residues, suggesting potential conformational changes in tyrosinase. Molecular docking analysis indicated that hydrogen bonding and π-π stacking interactions occurred between anthocyanins and arbutin in the AAC system. Specifically, anthocyanins primarily interacted with TYR through π-π and π-alkyl interactions, while α-arbutin predominantly bound to TYR via hydrogen bonding. Consistent with the interaction study, α-arbutin was found to associate with tyrosinase mainly through hydrogen bonding and van der Waals forces. These findings provide novel insights into the interactions between anthocyanins and α-arbutin in the context of food science and lay a foundation for the development of innovative TYR inhibitors.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.