太赫兹光谱量子级联激光器的电压控制和注入层厚度相关调谐

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mariusz Mączka*,  and , Grzegorz Hałdaś, 
{"title":"太赫兹光谱量子级联激光器的电压控制和注入层厚度相关调谐","authors":"Mariusz Mączka*,&nbsp; and ,&nbsp;Grzegorz Hałdaś,&nbsp;","doi":"10.1021/acsami.5c0304010.1021/acsami.5c03040","DOIUrl":null,"url":null,"abstract":"<p >This work presents a numerical study of the tuning capabilities of quantum cascade lasers (QCLs) in terahertz imaging systems. This frequency range allows precise molecular identification without damaging the substance. QCL tuning is achieved by adjusting the power supply and the geometric dimensions of the injector region. Using the authors’ Infinite and Finite Model of Superlattice (IMSL and FMSL) approach, the model quickly predicts tuning trends, which are then validated with detailed radiation maps generated by the Real Space Model (RSM). Numerical results reveal a high sensitivity of the QCL optical gain to injector width variations, enabling the creation of either multiple separate tuning regions or a single continuous tuning region with minimal spectral shift.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 17","pages":"26032–26044 26032–26044"},"PeriodicalIF":8.2000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsami.5c03040","citationCount":"0","resultStr":"{\"title\":\"Voltage-Controlled and Injector Layer Thickness-Dependent Tuning of Quantum Cascade Laser for Terahertz Spectroscopy\",\"authors\":\"Mariusz Mączka*,&nbsp; and ,&nbsp;Grzegorz Hałdaś,&nbsp;\",\"doi\":\"10.1021/acsami.5c0304010.1021/acsami.5c03040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This work presents a numerical study of the tuning capabilities of quantum cascade lasers (QCLs) in terahertz imaging systems. This frequency range allows precise molecular identification without damaging the substance. QCL tuning is achieved by adjusting the power supply and the geometric dimensions of the injector region. Using the authors’ Infinite and Finite Model of Superlattice (IMSL and FMSL) approach, the model quickly predicts tuning trends, which are then validated with detailed radiation maps generated by the Real Space Model (RSM). Numerical results reveal a high sensitivity of the QCL optical gain to injector width variations, enabling the creation of either multiple separate tuning regions or a single continuous tuning region with minimal spectral shift.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"17 17\",\"pages\":\"26032–26044 26032–26044\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsami.5c03040\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.5c03040\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.5c03040","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文对太赫兹成像系统中量子级联激光器(qcl)的调谐能力进行了数值研究。该频率范围允许在不损坏物质的情况下进行精确的分子识别。QCL调谐是通过调节电源和喷油器区域的几何尺寸来实现的。利用作者的无限和有限超晶格模型(IMSL和FMSL)方法,该模型可以快速预测调谐趋势,然后用真实空间模型(RSM)生成的详细辐射图进行验证。数值结果表明,QCL光学增益对注入器宽度变化具有很高的灵敏度,可以创建多个独立的调谐区域,也可以创建一个光谱位移最小的连续调谐区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Voltage-Controlled and Injector Layer Thickness-Dependent Tuning of Quantum Cascade Laser for Terahertz Spectroscopy

This work presents a numerical study of the tuning capabilities of quantum cascade lasers (QCLs) in terahertz imaging systems. This frequency range allows precise molecular identification without damaging the substance. QCL tuning is achieved by adjusting the power supply and the geometric dimensions of the injector region. Using the authors’ Infinite and Finite Model of Superlattice (IMSL and FMSL) approach, the model quickly predicts tuning trends, which are then validated with detailed radiation maps generated by the Real Space Model (RSM). Numerical results reveal a high sensitivity of the QCL optical gain to injector width variations, enabling the creation of either multiple separate tuning regions or a single continuous tuning region with minimal spectral shift.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信