Rajul S Bains,Tara G Raju,Layla C Semaan,Anton Block,Yukiko Yamaguchi,Saul J Priceman,Steven C George,Venktesh S Shirure
{"title":"血管化肿瘤芯片研究CAR-T细胞的免疫抑制。","authors":"Rajul S Bains,Tara G Raju,Layla C Semaan,Anton Block,Yukiko Yamaguchi,Saul J Priceman,Steven C George,Venktesh S Shirure","doi":"10.1039/d4lc01089b","DOIUrl":null,"url":null,"abstract":"Chimeric antigen receptor (CAR)-T cell immunotherapy, effective in blood cancers, shows limited success in solid tumors, such as prostate, pancreatic, and brain cancers due, in part, to an immunosuppressive tumor microenvironment (TME). Immunosuppression affects various cell types, including tumor cells, macrophages, and endothelial cells. Conventional murine-based models offer limited concordance with human immunology and cancer biology. Therefore, we have developed a human \"tumor-on-a-chip\" (TOC) platform to model elements of immunosuppression at high spatiotemporal resolution. Our TOC features an endothelial cell-lined channel that mimics features of an in vivo capillary, such as cell attachment and extravasation across the endothelium and into the TME. Using 70 kDa dextran and fluorescence-recovery-after-photobleaching (FRAP), we confirmed physiologic interstitial flow velocities (0.1-1 μm s-1). Our device demonstrates that tumor-derived factors can diffuse in the opposite direction of interstitial flow to reach the endothelium up to 200 μm away, and at concentrations as high as 20% of those at the tumor margin. M2-like immunosuppressive macrophages and endothelial cells affect prostate tumor cell growth, clustering, and migration. M2-like macrophages also induce PD-L1 and inhibit ICAM-1 gene expression on the adjacent endothelium in a pattern that limits CAR-T cell extravasation and effector function. This observation is abrogated in the presence of the anti-PD-L1 drug atezolizumab. These results provide mechanistic insight for in vivo observations showing limited CAR-T cell extravasation and effector function in solid tumors. Furthermore, they point to a specific role of M2 macrophages in driving CAR-T cell migration into and within the TME and could prove useful in the development of novel therapies to improve solid tumor CAR-T cell therapies.","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":"67 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vascularized tumor-on-a-chip to investigate immunosuppression of CAR-T cells.\",\"authors\":\"Rajul S Bains,Tara G Raju,Layla C Semaan,Anton Block,Yukiko Yamaguchi,Saul J Priceman,Steven C George,Venktesh S Shirure\",\"doi\":\"10.1039/d4lc01089b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chimeric antigen receptor (CAR)-T cell immunotherapy, effective in blood cancers, shows limited success in solid tumors, such as prostate, pancreatic, and brain cancers due, in part, to an immunosuppressive tumor microenvironment (TME). Immunosuppression affects various cell types, including tumor cells, macrophages, and endothelial cells. Conventional murine-based models offer limited concordance with human immunology and cancer biology. Therefore, we have developed a human \\\"tumor-on-a-chip\\\" (TOC) platform to model elements of immunosuppression at high spatiotemporal resolution. Our TOC features an endothelial cell-lined channel that mimics features of an in vivo capillary, such as cell attachment and extravasation across the endothelium and into the TME. Using 70 kDa dextran and fluorescence-recovery-after-photobleaching (FRAP), we confirmed physiologic interstitial flow velocities (0.1-1 μm s-1). Our device demonstrates that tumor-derived factors can diffuse in the opposite direction of interstitial flow to reach the endothelium up to 200 μm away, and at concentrations as high as 20% of those at the tumor margin. M2-like immunosuppressive macrophages and endothelial cells affect prostate tumor cell growth, clustering, and migration. M2-like macrophages also induce PD-L1 and inhibit ICAM-1 gene expression on the adjacent endothelium in a pattern that limits CAR-T cell extravasation and effector function. This observation is abrogated in the presence of the anti-PD-L1 drug atezolizumab. These results provide mechanistic insight for in vivo observations showing limited CAR-T cell extravasation and effector function in solid tumors. Furthermore, they point to a specific role of M2 macrophages in driving CAR-T cell migration into and within the TME and could prove useful in the development of novel therapies to improve solid tumor CAR-T cell therapies.\",\"PeriodicalId\":85,\"journal\":{\"name\":\"Lab on a Chip\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lab on a Chip\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1039/d4lc01089b\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d4lc01089b","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Vascularized tumor-on-a-chip to investigate immunosuppression of CAR-T cells.
Chimeric antigen receptor (CAR)-T cell immunotherapy, effective in blood cancers, shows limited success in solid tumors, such as prostate, pancreatic, and brain cancers due, in part, to an immunosuppressive tumor microenvironment (TME). Immunosuppression affects various cell types, including tumor cells, macrophages, and endothelial cells. Conventional murine-based models offer limited concordance with human immunology and cancer biology. Therefore, we have developed a human "tumor-on-a-chip" (TOC) platform to model elements of immunosuppression at high spatiotemporal resolution. Our TOC features an endothelial cell-lined channel that mimics features of an in vivo capillary, such as cell attachment and extravasation across the endothelium and into the TME. Using 70 kDa dextran and fluorescence-recovery-after-photobleaching (FRAP), we confirmed physiologic interstitial flow velocities (0.1-1 μm s-1). Our device demonstrates that tumor-derived factors can diffuse in the opposite direction of interstitial flow to reach the endothelium up to 200 μm away, and at concentrations as high as 20% of those at the tumor margin. M2-like immunosuppressive macrophages and endothelial cells affect prostate tumor cell growth, clustering, and migration. M2-like macrophages also induce PD-L1 and inhibit ICAM-1 gene expression on the adjacent endothelium in a pattern that limits CAR-T cell extravasation and effector function. This observation is abrogated in the presence of the anti-PD-L1 drug atezolizumab. These results provide mechanistic insight for in vivo observations showing limited CAR-T cell extravasation and effector function in solid tumors. Furthermore, they point to a specific role of M2 macrophages in driving CAR-T cell migration into and within the TME and could prove useful in the development of novel therapies to improve solid tumor CAR-T cell therapies.
期刊介绍:
Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.