{"title":"液-液界面的初始液滴聚并","authors":"Yingjie Fei, Youguang Ma, Huai Z. Li","doi":"10.1002/aic.18879","DOIUrl":null,"url":null,"abstract":"The initial coalescence of drops with bulk liquid in various outer fluids was investigated, focusing on the effect of outer fluid's viscosity. The inner fluids included both Newtonian and non-Newtonian liquids. A micro-particle image velocimetry (micro-PIV) system with 0.2 ms temporal and 5.2 μm spatial resolution quantified the flow field and mapped the viscosity distribution within the coalescing non-Newtonian drops. The temporary evolution of the liquid bridge width was tracked using both an electrical method with 0.8 μs resolution and an optical method with 10 μm resolution. In air, the rescaled bridge width <i>Φ</i> followed classical regimes with normalized time <i>τ</i>, exhibiting a viscous regime (<i>Φ</i> ~ <i>τ</i>) followed by an inertial regime (<i>Φ</i> ~ <i>τ</i><sup>1/2</sup>). In viscous outer fluids, both regimes are present, but a prolonged crossover regime was observed. An empirical fitting <i>Φ</i> ~ <i>τ</i> ln<i>τ</i> is found to satisfactorily describe the whole coalescence.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"37 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Initial drop coalescence at a liquid–liquid interface\",\"authors\":\"Yingjie Fei, Youguang Ma, Huai Z. Li\",\"doi\":\"10.1002/aic.18879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The initial coalescence of drops with bulk liquid in various outer fluids was investigated, focusing on the effect of outer fluid's viscosity. The inner fluids included both Newtonian and non-Newtonian liquids. A micro-particle image velocimetry (micro-PIV) system with 0.2 ms temporal and 5.2 μm spatial resolution quantified the flow field and mapped the viscosity distribution within the coalescing non-Newtonian drops. The temporary evolution of the liquid bridge width was tracked using both an electrical method with 0.8 μs resolution and an optical method with 10 μm resolution. In air, the rescaled bridge width <i>Φ</i> followed classical regimes with normalized time <i>τ</i>, exhibiting a viscous regime (<i>Φ</i> ~ <i>τ</i>) followed by an inertial regime (<i>Φ</i> ~ <i>τ</i><sup>1/2</sup>). In viscous outer fluids, both regimes are present, but a prolonged crossover regime was observed. An empirical fitting <i>Φ</i> ~ <i>τ</i> ln<i>τ</i> is found to satisfactorily describe the whole coalescence.\",\"PeriodicalId\":120,\"journal\":{\"name\":\"AIChE Journal\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIChE Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/aic.18879\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18879","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Initial drop coalescence at a liquid–liquid interface
The initial coalescence of drops with bulk liquid in various outer fluids was investigated, focusing on the effect of outer fluid's viscosity. The inner fluids included both Newtonian and non-Newtonian liquids. A micro-particle image velocimetry (micro-PIV) system with 0.2 ms temporal and 5.2 μm spatial resolution quantified the flow field and mapped the viscosity distribution within the coalescing non-Newtonian drops. The temporary evolution of the liquid bridge width was tracked using both an electrical method with 0.8 μs resolution and an optical method with 10 μm resolution. In air, the rescaled bridge width Φ followed classical regimes with normalized time τ, exhibiting a viscous regime (Φ ~ τ) followed by an inertial regime (Φ ~ τ1/2). In viscous outer fluids, both regimes are present, but a prolonged crossover regime was observed. An empirical fitting Φ ~ τ lnτ is found to satisfactorily describe the whole coalescence.
期刊介绍:
The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering.
The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field.
Articles are categorized according to the following topical areas:
Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food
Inorganic Materials: Synthesis and Processing
Particle Technology and Fluidization
Process Systems Engineering
Reaction Engineering, Kinetics and Catalysis
Separations: Materials, Devices and Processes
Soft Materials: Synthesis, Processing and Products
Thermodynamics and Molecular-Scale Phenomena
Transport Phenomena and Fluid Mechanics.