Siao Chen, Prof. Yurui Xue, Yang Gao, Han Wu, Siyi Chen, Yunhao Zheng, Prof. Yuliang Li
{"title":"界面原子重排驱动电位自适应电催化烯烃加氢","authors":"Siao Chen, Prof. Yurui Xue, Yang Gao, Han Wu, Siyi Chen, Yunhao Zheng, Prof. Yuliang Li","doi":"10.1002/anie.202507269","DOIUrl":null,"url":null,"abstract":"<p>Dynamic rearrangement of metal atoms at heterointerfaces by chemical bond conversion drives high efficiency electrocatalytic processes, which is a new concept in the field of electrocatalysis and a new discovery to directly improve catalytic activity. It is of great significance to explore transformative catalytic systems that directly control the interfacial structure and function of atomic composition. As an emerging 2D carbon allotrope featuring unique <i>sp</i>-<i>sp</i><sup>2</sup> co-hybridization, graphdiyne (GDY) offers unprecedented advantages for heterointerface engineering. In particular, the uneven surface charge distribution of GDY, high distribution of active sites and customizable electronic structures provide unprecedented opportunities for the development of a new generation of catalytic systems. Here, we report a new idea to directly control the cooperative growth and drive metal atomic rearrangement on the interface of GDY/NiPd/GDY. The results of atomic-resolution electron microscopy characterization revealed two unique interfacial phenomena: i) GDY-induced massive dislocation formation within NiPd nanoalloys and ii) rearrangement of surface metal atoms from (111) to (200) facets. Detailed spectroscopic analysis further demonstrated the composition-dependent evolution of elemental valence states and stoichiometric ratios. This atomic-level restructuring establishes a charge-redistribution network featuring non-integer charge transfer, which improves the overall conductivity and intrinsic activity. What is even more encouraging is that this electrocatalytic olefin hydrogenation is carried out in an aqueous solution. The GDY/NiPd/GDY heterostructure achieves exceptional activity (turnover frequency: 6.8 s<sup>−1</sup>), stability (>5 cycles), and chemo-selectivity (−100%), which is superior to traditional catalysts.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 27","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interfacial Atom Rearrangement Drives Potential-Adaptive Electrocatalytic Olefin Hydrogenation\",\"authors\":\"Siao Chen, Prof. Yurui Xue, Yang Gao, Han Wu, Siyi Chen, Yunhao Zheng, Prof. Yuliang Li\",\"doi\":\"10.1002/anie.202507269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Dynamic rearrangement of metal atoms at heterointerfaces by chemical bond conversion drives high efficiency electrocatalytic processes, which is a new concept in the field of electrocatalysis and a new discovery to directly improve catalytic activity. It is of great significance to explore transformative catalytic systems that directly control the interfacial structure and function of atomic composition. As an emerging 2D carbon allotrope featuring unique <i>sp</i>-<i>sp</i><sup>2</sup> co-hybridization, graphdiyne (GDY) offers unprecedented advantages for heterointerface engineering. In particular, the uneven surface charge distribution of GDY, high distribution of active sites and customizable electronic structures provide unprecedented opportunities for the development of a new generation of catalytic systems. Here, we report a new idea to directly control the cooperative growth and drive metal atomic rearrangement on the interface of GDY/NiPd/GDY. The results of atomic-resolution electron microscopy characterization revealed two unique interfacial phenomena: i) GDY-induced massive dislocation formation within NiPd nanoalloys and ii) rearrangement of surface metal atoms from (111) to (200) facets. Detailed spectroscopic analysis further demonstrated the composition-dependent evolution of elemental valence states and stoichiometric ratios. This atomic-level restructuring establishes a charge-redistribution network featuring non-integer charge transfer, which improves the overall conductivity and intrinsic activity. What is even more encouraging is that this electrocatalytic olefin hydrogenation is carried out in an aqueous solution. The GDY/NiPd/GDY heterostructure achieves exceptional activity (turnover frequency: 6.8 s<sup>−1</sup>), stability (>5 cycles), and chemo-selectivity (−100%), which is superior to traditional catalysts.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"64 27\",\"pages\":\"\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202507269\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202507269","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Interfacial Atom Rearrangement Drives Potential-Adaptive Electrocatalytic Olefin Hydrogenation
Dynamic rearrangement of metal atoms at heterointerfaces by chemical bond conversion drives high efficiency electrocatalytic processes, which is a new concept in the field of electrocatalysis and a new discovery to directly improve catalytic activity. It is of great significance to explore transformative catalytic systems that directly control the interfacial structure and function of atomic composition. As an emerging 2D carbon allotrope featuring unique sp-sp2 co-hybridization, graphdiyne (GDY) offers unprecedented advantages for heterointerface engineering. In particular, the uneven surface charge distribution of GDY, high distribution of active sites and customizable electronic structures provide unprecedented opportunities for the development of a new generation of catalytic systems. Here, we report a new idea to directly control the cooperative growth and drive metal atomic rearrangement on the interface of GDY/NiPd/GDY. The results of atomic-resolution electron microscopy characterization revealed two unique interfacial phenomena: i) GDY-induced massive dislocation formation within NiPd nanoalloys and ii) rearrangement of surface metal atoms from (111) to (200) facets. Detailed spectroscopic analysis further demonstrated the composition-dependent evolution of elemental valence states and stoichiometric ratios. This atomic-level restructuring establishes a charge-redistribution network featuring non-integer charge transfer, which improves the overall conductivity and intrinsic activity. What is even more encouraging is that this electrocatalytic olefin hydrogenation is carried out in an aqueous solution. The GDY/NiPd/GDY heterostructure achieves exceptional activity (turnover frequency: 6.8 s−1), stability (>5 cycles), and chemo-selectivity (−100%), which is superior to traditional catalysts.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.