界面原子重排驱动电位自适应电催化烯烃加氢

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Siao Chen, Prof. Yurui Xue, Yang Gao, Han Wu, Siyi Chen, Yunhao Zheng, Prof. Yuliang Li
{"title":"界面原子重排驱动电位自适应电催化烯烃加氢","authors":"Siao Chen,&nbsp;Prof. Yurui Xue,&nbsp;Yang Gao,&nbsp;Han Wu,&nbsp;Siyi Chen,&nbsp;Yunhao Zheng,&nbsp;Prof. Yuliang Li","doi":"10.1002/anie.202507269","DOIUrl":null,"url":null,"abstract":"<p>Dynamic rearrangement of metal atoms at heterointerfaces by chemical bond conversion drives high efficiency electrocatalytic processes, which is a new concept in the field of electrocatalysis and a new discovery to directly improve catalytic activity. It is of great significance to explore transformative catalytic systems that directly control the interfacial structure and function of atomic composition. As an emerging 2D carbon allotrope featuring unique <i>sp</i>-<i>sp</i><sup>2</sup> co-hybridization, graphdiyne (GDY) offers unprecedented advantages for heterointerface engineering. In particular, the uneven surface charge distribution of GDY, high distribution of active sites and customizable electronic structures provide unprecedented opportunities for the development of a new generation of catalytic systems. Here, we report a new idea to directly control the cooperative growth and drive metal atomic rearrangement on the interface of GDY/NiPd/GDY. The results of atomic-resolution electron microscopy characterization revealed two unique interfacial phenomena: i) GDY-induced massive dislocation formation within NiPd nanoalloys and ii) rearrangement of surface metal atoms from (111) to (200) facets. Detailed spectroscopic analysis further demonstrated the composition-dependent evolution of elemental valence states and stoichiometric ratios. This atomic-level restructuring establishes a charge-redistribution network featuring non-integer charge transfer, which improves the overall conductivity and intrinsic activity. What is even more encouraging is that this electrocatalytic olefin hydrogenation is carried out in an aqueous solution. The GDY/NiPd/GDY heterostructure achieves exceptional activity (turnover frequency: 6.8 s<sup>−1</sup>), stability (&gt;5 cycles), and chemo-selectivity (−100%), which is superior to traditional catalysts.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 27","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interfacial Atom Rearrangement Drives Potential-Adaptive Electrocatalytic Olefin Hydrogenation\",\"authors\":\"Siao Chen,&nbsp;Prof. Yurui Xue,&nbsp;Yang Gao,&nbsp;Han Wu,&nbsp;Siyi Chen,&nbsp;Yunhao Zheng,&nbsp;Prof. Yuliang Li\",\"doi\":\"10.1002/anie.202507269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Dynamic rearrangement of metal atoms at heterointerfaces by chemical bond conversion drives high efficiency electrocatalytic processes, which is a new concept in the field of electrocatalysis and a new discovery to directly improve catalytic activity. It is of great significance to explore transformative catalytic systems that directly control the interfacial structure and function of atomic composition. As an emerging 2D carbon allotrope featuring unique <i>sp</i>-<i>sp</i><sup>2</sup> co-hybridization, graphdiyne (GDY) offers unprecedented advantages for heterointerface engineering. In particular, the uneven surface charge distribution of GDY, high distribution of active sites and customizable electronic structures provide unprecedented opportunities for the development of a new generation of catalytic systems. Here, we report a new idea to directly control the cooperative growth and drive metal atomic rearrangement on the interface of GDY/NiPd/GDY. The results of atomic-resolution electron microscopy characterization revealed two unique interfacial phenomena: i) GDY-induced massive dislocation formation within NiPd nanoalloys and ii) rearrangement of surface metal atoms from (111) to (200) facets. Detailed spectroscopic analysis further demonstrated the composition-dependent evolution of elemental valence states and stoichiometric ratios. This atomic-level restructuring establishes a charge-redistribution network featuring non-integer charge transfer, which improves the overall conductivity and intrinsic activity. What is even more encouraging is that this electrocatalytic olefin hydrogenation is carried out in an aqueous solution. The GDY/NiPd/GDY heterostructure achieves exceptional activity (turnover frequency: 6.8 s<sup>−1</sup>), stability (&gt;5 cycles), and chemo-selectivity (−100%), which is superior to traditional catalysts.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"64 27\",\"pages\":\"\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202507269\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202507269","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过化学键转换,金属原子在异质界面上的动态重排驱动了高效的电催化过程。探索直接控制界面结构和原子组成功能的转化催化体系具有重要意义。石墨炔作为一种新兴的二维碳同素异形体,在异质界面工程中具有前所未有的优势。特别是GDY不均匀的表面电荷分布、高活性位点分布和可定制的电子结构,为开发新一代催化体系提供了前所未有的机遇。本文提出了一种直接控制GDY/NiPd/GDY界面协同生长和驱动金属原子重排的新思路。实验结果揭示了两种独特的界面现象:(i) gdy诱导NiPd纳米合金内部形成大量位错(ii)表面金属原子从(111)到(200)面的重排。详细的光谱分析进一步证明了元素价态和化学计量比的组成依赖演化。这种原子水平的重组建立了一个非整数电荷转移的电荷再分配网络,提高了整体电导率和本征活性。更令人鼓舞的是,这种电催化烯烃加氢反应是在水溶液中进行的。GDY/NiPd/GDY异质结构具有优异的活性(周转率:6.8 s-1)、稳定性(>;5个循环)和化学选择性(~100%),优于传统催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Interfacial Atom Rearrangement Drives Potential-Adaptive Electrocatalytic Olefin Hydrogenation

Interfacial Atom Rearrangement Drives Potential-Adaptive Electrocatalytic Olefin Hydrogenation

Dynamic rearrangement of metal atoms at heterointerfaces by chemical bond conversion drives high efficiency electrocatalytic processes, which is a new concept in the field of electrocatalysis and a new discovery to directly improve catalytic activity. It is of great significance to explore transformative catalytic systems that directly control the interfacial structure and function of atomic composition. As an emerging 2D carbon allotrope featuring unique sp-sp2 co-hybridization, graphdiyne (GDY) offers unprecedented advantages for heterointerface engineering. In particular, the uneven surface charge distribution of GDY, high distribution of active sites and customizable electronic structures provide unprecedented opportunities for the development of a new generation of catalytic systems. Here, we report a new idea to directly control the cooperative growth and drive metal atomic rearrangement on the interface of GDY/NiPd/GDY. The results of atomic-resolution electron microscopy characterization revealed two unique interfacial phenomena: i) GDY-induced massive dislocation formation within NiPd nanoalloys and ii) rearrangement of surface metal atoms from (111) to (200) facets. Detailed spectroscopic analysis further demonstrated the composition-dependent evolution of elemental valence states and stoichiometric ratios. This atomic-level restructuring establishes a charge-redistribution network featuring non-integer charge transfer, which improves the overall conductivity and intrinsic activity. What is even more encouraging is that this electrocatalytic olefin hydrogenation is carried out in an aqueous solution. The GDY/NiPd/GDY heterostructure achieves exceptional activity (turnover frequency: 6.8 s−1), stability (>5 cycles), and chemo-selectivity (−100%), which is superior to traditional catalysts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信