抑制全固态电池中锂枝晶生长的锡碳双缓冲层

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-04-29 DOI:10.1021/acsnano.4c16271
Venkata Sai Avvaru, Tofunmi Ogunfunmi, Seonghun Jeong, Mouhamad Said Diallo, John Watt, Mary C. Scott, Haegyeom Kim
{"title":"抑制全固态电池中锂枝晶生长的锡碳双缓冲层","authors":"Venkata Sai Avvaru, Tofunmi Ogunfunmi, Seonghun Jeong, Mouhamad Said Diallo, John Watt, Mary C. Scott, Haegyeom Kim","doi":"10.1021/acsnano.4c16271","DOIUrl":null,"url":null,"abstract":"All-solid-state lithium–metal batteries hold great promise because of their high energy density stemming from using an energy-dense lithium–metal anode. However, mitigating the dendritic lithium–metal growth, originating from heterogeneous lithium–metal deposition, is a priority to suppress short-circuit and extend cycle life. This study employs direct current (DC) magnetron sputter coating to deposit tin (Sn) and carbon (C) on a stainless steel (SUS) current collector to achieve uniform lithium–metal plating and improve cycling performance. In particular, we evaluated and compared two dual buffer layer designs, consisting of Sn and C: (1) a thin C layer is deposited on the Sn metal layer (SUS/Sn/C), and (2) the Sn metal layer is deposited on the thin C layer (SUS/C/Sn). This study demonstrated that the SUS/Sn/C buffer layer is more effective in suppressing lithium dendrite growth and improving cycling stability than the SUS/C/Sn buffer layer. The SUS/Sn/C buffer layer shows stable Li-plating/stripping cycling over 450 cycles without noticeable short-circuit. <i>Ex situ</i> and <i>in situ</i> characterization confirm the role of the SUS/Sn/C dual buffer layer: (i) the Sn metals result in a uniform lithium–metal deposition on the current collector and (ii) the carbon layer acts as a physical barrier to suppress the lithium dendrite growth toward the solid electrolyte because of its lithiophobic nature.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"81 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tin–Carbon Dual Buffer Layer to Suppress Lithium Dendrite Growth in All-Solid-State Batteries\",\"authors\":\"Venkata Sai Avvaru, Tofunmi Ogunfunmi, Seonghun Jeong, Mouhamad Said Diallo, John Watt, Mary C. Scott, Haegyeom Kim\",\"doi\":\"10.1021/acsnano.4c16271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"All-solid-state lithium–metal batteries hold great promise because of their high energy density stemming from using an energy-dense lithium–metal anode. However, mitigating the dendritic lithium–metal growth, originating from heterogeneous lithium–metal deposition, is a priority to suppress short-circuit and extend cycle life. This study employs direct current (DC) magnetron sputter coating to deposit tin (Sn) and carbon (C) on a stainless steel (SUS) current collector to achieve uniform lithium–metal plating and improve cycling performance. In particular, we evaluated and compared two dual buffer layer designs, consisting of Sn and C: (1) a thin C layer is deposited on the Sn metal layer (SUS/Sn/C), and (2) the Sn metal layer is deposited on the thin C layer (SUS/C/Sn). This study demonstrated that the SUS/Sn/C buffer layer is more effective in suppressing lithium dendrite growth and improving cycling stability than the SUS/C/Sn buffer layer. The SUS/Sn/C buffer layer shows stable Li-plating/stripping cycling over 450 cycles without noticeable short-circuit. <i>Ex situ</i> and <i>in situ</i> characterization confirm the role of the SUS/Sn/C dual buffer layer: (i) the Sn metals result in a uniform lithium–metal deposition on the current collector and (ii) the carbon layer acts as a physical barrier to suppress the lithium dendrite growth toward the solid electrolyte because of its lithiophobic nature.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"81 1\",\"pages\":\"\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c16271\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c16271","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

全固态锂金属电池由于使用能量密集的锂金属阳极而具有高能量密度,因此前景广阔。然而,抑制源自非均相锂金属沉积的枝晶锂金属生长是抑制短路和延长循环寿命的首要任务。本研究采用直流磁控溅射涂层在不锈钢集流器上沉积锡(Sn)和碳(C),实现均匀镀锂金属,提高循环性能。我们特别评估和比较了两种由Sn和C组成的双缓冲层设计:(1)在Sn金属层(SUS/Sn/C)上沉积薄C层,(2)在薄C层(SUS/C/Sn)上沉积Sn金属层。研究表明,与SUS/C/Sn缓冲层相比,SUS/Sn/C缓冲层在抑制锂枝晶生长和提高循环稳定性方面更有效。SUS/Sn/C缓冲层显示稳定的镀锂/剥离循环超过450次,没有明显的短路。非原位和原位表征证实了SUS/Sn/C双缓冲层的作用:(i) Sn金属导致在电流集电极上均匀的锂金属沉积;(ii)碳层由于其疏锂性质,可以作为物理屏障抑制锂枝晶向固体电解质的生长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tin–Carbon Dual Buffer Layer to Suppress Lithium Dendrite Growth in All-Solid-State Batteries

Tin–Carbon Dual Buffer Layer to Suppress Lithium Dendrite Growth in All-Solid-State Batteries
All-solid-state lithium–metal batteries hold great promise because of their high energy density stemming from using an energy-dense lithium–metal anode. However, mitigating the dendritic lithium–metal growth, originating from heterogeneous lithium–metal deposition, is a priority to suppress short-circuit and extend cycle life. This study employs direct current (DC) magnetron sputter coating to deposit tin (Sn) and carbon (C) on a stainless steel (SUS) current collector to achieve uniform lithium–metal plating and improve cycling performance. In particular, we evaluated and compared two dual buffer layer designs, consisting of Sn and C: (1) a thin C layer is deposited on the Sn metal layer (SUS/Sn/C), and (2) the Sn metal layer is deposited on the thin C layer (SUS/C/Sn). This study demonstrated that the SUS/Sn/C buffer layer is more effective in suppressing lithium dendrite growth and improving cycling stability than the SUS/C/Sn buffer layer. The SUS/Sn/C buffer layer shows stable Li-plating/stripping cycling over 450 cycles without noticeable short-circuit. Ex situ and in situ characterization confirm the role of the SUS/Sn/C dual buffer layer: (i) the Sn metals result in a uniform lithium–metal deposition on the current collector and (ii) the carbon layer acts as a physical barrier to suppress the lithium dendrite growth toward the solid electrolyte because of its lithiophobic nature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信