基于D-p轨道杂化的分层多孔复合碳微球上层结构高效捕获低浓度Cs+

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-04-28 DOI:10.1002/smll.202409054
Pan He, Yang Li, Kaifu Yu, Pengyu Yan, Weijian Liu, Meicheng Zhang, Lijian Ma
{"title":"基于D-p轨道杂化的分层多孔复合碳微球上层结构高效捕获低浓度Cs+","authors":"Pan He,&nbsp;Yang Li,&nbsp;Kaifu Yu,&nbsp;Pengyu Yan,&nbsp;Weijian Liu,&nbsp;Meicheng Zhang,&nbsp;Lijian Ma","doi":"10.1002/smll.202409054","DOIUrl":null,"url":null,"abstract":"<p>The limitation of diffusion kinetics affects the adsorption performance of porous materials. Hierarchical porous structure is one of the effective strategies to solve this problem. However, it is a challenge to construct macro-microporous orderly hierarchical structures to maximize material performance. In this work, three orderly hierarchical porous composite carbon microsphere superstructures are prepared self-assembled from nanoscale primary particles by microfluidic technology, which overcame the kinetic limitation and enhanced the adsorption performance. The surface microenvironment of these superstructures is regulated by different transition metals with varying numbers of d-orbital electrons. These hierarchical pore structures and effective d-p orbital hybridization enabled the composite carbon microsphere superstructures to efficiently capture low-concentration cesium ions, of which the highest adsorption capacity is 5 times that of non-metal carbon microsphere superstructures. This strategy provides a potential approach for precisely controlling the surface microenvironment of materials.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 25","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchical Porous Composite Carbon Microsphere Superstructures Based on D-p Orbital Hybridization for Efficient Capture of Low-Concentration Cs+\",\"authors\":\"Pan He,&nbsp;Yang Li,&nbsp;Kaifu Yu,&nbsp;Pengyu Yan,&nbsp;Weijian Liu,&nbsp;Meicheng Zhang,&nbsp;Lijian Ma\",\"doi\":\"10.1002/smll.202409054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The limitation of diffusion kinetics affects the adsorption performance of porous materials. Hierarchical porous structure is one of the effective strategies to solve this problem. However, it is a challenge to construct macro-microporous orderly hierarchical structures to maximize material performance. In this work, three orderly hierarchical porous composite carbon microsphere superstructures are prepared self-assembled from nanoscale primary particles by microfluidic technology, which overcame the kinetic limitation and enhanced the adsorption performance. The surface microenvironment of these superstructures is regulated by different transition metals with varying numbers of d-orbital electrons. These hierarchical pore structures and effective d-p orbital hybridization enabled the composite carbon microsphere superstructures to efficiently capture low-concentration cesium ions, of which the highest adsorption capacity is 5 times that of non-metal carbon microsphere superstructures. This strategy provides a potential approach for precisely controlling the surface microenvironment of materials.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"21 25\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202409054\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202409054","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

扩散动力学的局限性影响了多孔材料的吸附性能。分层多孔结构是解决这一问题的有效策略之一。然而,如何构建宏观微孔有序分层结构以实现材料性能的最大化是一个挑战。本文利用微流控技术,由纳米级原生颗粒自组装制备了3个有序层次多孔复合碳微球超结构,克服了动力学限制,提高了吸附性能。这些上层结构的表面微环境是由具有不同数量d轨道电子的不同过渡金属调控的。这些分层孔隙结构和有效的d-p轨道杂化使得复合碳微球上层结构能够高效捕获低浓度铯离子,其最高吸附量是非金属碳微球上层结构的5倍。该策略为精确控制材料表面微环境提供了一种潜在的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hierarchical Porous Composite Carbon Microsphere Superstructures Based on D-p Orbital Hybridization for Efficient Capture of Low-Concentration Cs+

Hierarchical Porous Composite Carbon Microsphere Superstructures Based on D-p Orbital Hybridization for Efficient Capture of Low-Concentration Cs+

Hierarchical Porous Composite Carbon Microsphere Superstructures Based on D-p Orbital Hybridization for Efficient Capture of Low-Concentration Cs+

The limitation of diffusion kinetics affects the adsorption performance of porous materials. Hierarchical porous structure is one of the effective strategies to solve this problem. However, it is a challenge to construct macro-microporous orderly hierarchical structures to maximize material performance. In this work, three orderly hierarchical porous composite carbon microsphere superstructures are prepared self-assembled from nanoscale primary particles by microfluidic technology, which overcame the kinetic limitation and enhanced the adsorption performance. The surface microenvironment of these superstructures is regulated by different transition metals with varying numbers of d-orbital electrons. These hierarchical pore structures and effective d-p orbital hybridization enabled the composite carbon microsphere superstructures to efficiently capture low-concentration cesium ions, of which the highest adsorption capacity is 5 times that of non-metal carbon microsphere superstructures. This strategy provides a potential approach for precisely controlling the surface microenvironment of materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信