原位形成相增强FeCoCrNiCu/Ti复合中间层钎焊Ti3SiC2和Al0.3CoCrFeNi的显微组织和力学性能

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Mushi Zheng, Xiaoqing Si, Lei Chen, Tong Lin, Chun Li, Junlei Qi, Jian Cao
{"title":"原位形成相增强FeCoCrNiCu/Ti复合中间层钎焊Ti3SiC2和Al0.3CoCrFeNi的显微组织和力学性能","authors":"Mushi Zheng,&nbsp;Xiaoqing Si,&nbsp;Lei Chen,&nbsp;Tong Lin,&nbsp;Chun Li,&nbsp;Junlei Qi,&nbsp;Jian Cao","doi":"10.1016/j.jallcom.2025.180693","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a brazing technique for joining Ti<sub>3</sub>SiC<sub>2</sub> ceramic and Al<sub>0.3</sub>CoCrFeNi HEA (high entropy alloy) using a FeCoCrNiCu/Ti composite interlayer. The resulting brazing seam features a BCC+FCC dual-phase matrix with in-situ-formed TiC reinforcement phases. Thermodynamic simulation analysis confirms the phases present in the joint. WDS (wavelength dispersive spectroscopy) elemental distribution studies further validate the interface composition. Optimized brazing parameters, including Ti interlayer thickness, temperature, and holding time, promote solid solution formation and minimize excessive reactions. A 20 μm Ti interlayer ensures optimal joint formation, with brazing at 1180 °C yielding crack-free joints and medium Ti<sub>3</sub>SiC<sub>2</sub> dissolution. The most homogeneous solid solution matrix is achieved with a 10-minute holding time. The moderate hardness of phases in the seam reflects their good plasticity, aiding stress release. Shear strength testing shows optimal values (∼85 MPa) at room temperature, with only a slight decrease (∼78 MPa) at 1000 °C. Additionally, the microstructure of the joints remains stable after 10 thermal cycles. This technique demonstrates the potential for producing durable, high-performance joints between Ti<sub>3</sub>SiC<sub>2</sub> and Al<sub>0.3</sub>CoCrFeNi HEA.</div></div>","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"1028 ","pages":"Article 180693"},"PeriodicalIF":6.3000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructure and mechanical properties of Ti3SiC2 and Al0.3CoCrFeNi brazed by the in-situ formed phases reinforced FeCoCrNiCu/Ti composite interlayer\",\"authors\":\"Mushi Zheng,&nbsp;Xiaoqing Si,&nbsp;Lei Chen,&nbsp;Tong Lin,&nbsp;Chun Li,&nbsp;Junlei Qi,&nbsp;Jian Cao\",\"doi\":\"10.1016/j.jallcom.2025.180693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents a brazing technique for joining Ti<sub>3</sub>SiC<sub>2</sub> ceramic and Al<sub>0.3</sub>CoCrFeNi HEA (high entropy alloy) using a FeCoCrNiCu/Ti composite interlayer. The resulting brazing seam features a BCC+FCC dual-phase matrix with in-situ-formed TiC reinforcement phases. Thermodynamic simulation analysis confirms the phases present in the joint. WDS (wavelength dispersive spectroscopy) elemental distribution studies further validate the interface composition. Optimized brazing parameters, including Ti interlayer thickness, temperature, and holding time, promote solid solution formation and minimize excessive reactions. A 20 μm Ti interlayer ensures optimal joint formation, with brazing at 1180 °C yielding crack-free joints and medium Ti<sub>3</sub>SiC<sub>2</sub> dissolution. The most homogeneous solid solution matrix is achieved with a 10-minute holding time. The moderate hardness of phases in the seam reflects their good plasticity, aiding stress release. Shear strength testing shows optimal values (∼85 MPa) at room temperature, with only a slight decrease (∼78 MPa) at 1000 °C. Additionally, the microstructure of the joints remains stable after 10 thermal cycles. This technique demonstrates the potential for producing durable, high-performance joints between Ti<sub>3</sub>SiC<sub>2</sub> and Al<sub>0.3</sub>CoCrFeNi HEA.</div></div>\",\"PeriodicalId\":344,\"journal\":{\"name\":\"Journal of Alloys and Compounds\",\"volume\":\"1028 \",\"pages\":\"Article 180693\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Alloys and Compounds\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925838825022546\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925838825022546","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种利用FeCoCrNiCu/Ti复合中间层钎焊连接Ti3SiC2陶瓷和Al0.3CoCrFeNi HEA(高熵合金)的技术。由此产生的钎焊焊缝具有BCC+FCC双相基体和原位形成的TiC增强相。热力学模拟分析证实了接头中存在的相。WDS(波长色散光谱)元素分布研究进一步验证了界面组成。优化的钎焊参数,包括钛层厚度、温度和保温时间,促进了固溶体的形成,并最大限度地减少了过度反应。20 μm Ti中间层可确保最佳的接头形成,钎焊温度为1180°C,产生无裂纹接头和中等Ti3SiC2溶解。最均匀的固溶体矩阵达到10分钟的保温时间。焊缝中相的中等硬度反映了其良好的塑性,有利于应力释放。抗剪强度测试结果显示,室温下的抗剪强度最优值(~85 MPa), 1000℃时的抗剪强度略有下降(~78 MPa)。另外,经过10次热循环后,接头的显微组织保持稳定。该技术展示了在Ti3SiC2和Al0.3CoCrFeNi HEA之间制造耐用、高性能关节的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microstructure and mechanical properties of Ti3SiC2 and Al0.3CoCrFeNi brazed by the in-situ formed phases reinforced FeCoCrNiCu/Ti composite interlayer
This study presents a brazing technique for joining Ti3SiC2 ceramic and Al0.3CoCrFeNi HEA (high entropy alloy) using a FeCoCrNiCu/Ti composite interlayer. The resulting brazing seam features a BCC+FCC dual-phase matrix with in-situ-formed TiC reinforcement phases. Thermodynamic simulation analysis confirms the phases present in the joint. WDS (wavelength dispersive spectroscopy) elemental distribution studies further validate the interface composition. Optimized brazing parameters, including Ti interlayer thickness, temperature, and holding time, promote solid solution formation and minimize excessive reactions. A 20 μm Ti interlayer ensures optimal joint formation, with brazing at 1180 °C yielding crack-free joints and medium Ti3SiC2 dissolution. The most homogeneous solid solution matrix is achieved with a 10-minute holding time. The moderate hardness of phases in the seam reflects their good plasticity, aiding stress release. Shear strength testing shows optimal values (∼85 MPa) at room temperature, with only a slight decrease (∼78 MPa) at 1000 °C. Additionally, the microstructure of the joints remains stable after 10 thermal cycles. This technique demonstrates the potential for producing durable, high-performance joints between Ti3SiC2 and Al0.3CoCrFeNi HEA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信