具有成本效益的对称pbse热电冷却器件

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Liqing Xu, Tao Hong, Shibo Liu, Sining Wang, Dongrui Liu, Tianhang Zhou, Yu Xiao, Li-Dong Zhao
{"title":"具有成本效益的对称pbse热电冷却器件","authors":"Liqing Xu, Tao Hong, Shibo Liu, Sining Wang, Dongrui Liu, Tianhang Zhou, Yu Xiao, Li-Dong Zhao","doi":"10.1002/adma.202502705","DOIUrl":null,"url":null,"abstract":"Thermoelectric cooling technology has broad applications but is limited by the high cost of tellurium (Te) in commercially available Bi<sub>2</sub>Te<sub>3</sub>-based thermoelectric materials. Herein, a cost-effective symmetric PbSe-based device constructed from 7 pairs of Pb<sub>0.988</sub>Cu<sub>0.002</sub>Se (p-type) and Pb<sub>1.02</sub>Cu<sub>0.002</sub>Se (n-type) is presented, which demonstrates impressive cooling temperature difference (Δ<i>T</i><sub>C</sub>) of 32.8 and 41.0 K with the hot side maintained at 303 and 343 K, respectively. This low-cost symmetric PbSe-based device exhibits superior cost-effectiveness (Δ<i>T</i>/cost) for near-room-temperature thermoelectric cooling compared to other Bi<sub>2</sub>Te<sub>3</sub>-based devices. Its high cooling performance primarily stems from an advanced carrier and phonon transport properties in p-type Pb<sub>0.988</sub>Cu<sub>0.002</sub>Se. Specifically, Pb vacancy and Cu substitution in Pb<sub>0.988</sub>Cu<sub>0.002</sub>Se act as strong p-type dopants that effectively optimize carrier density, resulting in a maximum power factor of 28.69 µW cm<sup>−1</sup> K<sup>−2</sup> at room temperature. Moreover, the mobile Cu atoms within the lattice significantly impede phonon propagation, leading to a low room-temperature lattice thermal conductivity of 1.10 W m<sup>−1</sup> K<sup>−1</sup>. Finally, the room-temperature figure of merit (<i>ZT</i>) and average <i>ZT</i> value in p-type Pb<sub>0.988</sub>Cu<sub>0.002</sub>Se can reach 0.6 and 0.68 at 300–573 K, surpassing previous p-type PbSe-based polycrystals. This work emphasizes the significant potential of a cost-effective PbSe compound for near-room-temperature cooling applications.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"81 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cost-Effective Symmetric PbSe-Based Device for Thermoelectric Cooling\",\"authors\":\"Liqing Xu, Tao Hong, Shibo Liu, Sining Wang, Dongrui Liu, Tianhang Zhou, Yu Xiao, Li-Dong Zhao\",\"doi\":\"10.1002/adma.202502705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermoelectric cooling technology has broad applications but is limited by the high cost of tellurium (Te) in commercially available Bi<sub>2</sub>Te<sub>3</sub>-based thermoelectric materials. Herein, a cost-effective symmetric PbSe-based device constructed from 7 pairs of Pb<sub>0.988</sub>Cu<sub>0.002</sub>Se (p-type) and Pb<sub>1.02</sub>Cu<sub>0.002</sub>Se (n-type) is presented, which demonstrates impressive cooling temperature difference (Δ<i>T</i><sub>C</sub>) of 32.8 and 41.0 K with the hot side maintained at 303 and 343 K, respectively. This low-cost symmetric PbSe-based device exhibits superior cost-effectiveness (Δ<i>T</i>/cost) for near-room-temperature thermoelectric cooling compared to other Bi<sub>2</sub>Te<sub>3</sub>-based devices. Its high cooling performance primarily stems from an advanced carrier and phonon transport properties in p-type Pb<sub>0.988</sub>Cu<sub>0.002</sub>Se. Specifically, Pb vacancy and Cu substitution in Pb<sub>0.988</sub>Cu<sub>0.002</sub>Se act as strong p-type dopants that effectively optimize carrier density, resulting in a maximum power factor of 28.69 µW cm<sup>−1</sup> K<sup>−2</sup> at room temperature. Moreover, the mobile Cu atoms within the lattice significantly impede phonon propagation, leading to a low room-temperature lattice thermal conductivity of 1.10 W m<sup>−1</sup> K<sup>−1</sup>. Finally, the room-temperature figure of merit (<i>ZT</i>) and average <i>ZT</i> value in p-type Pb<sub>0.988</sub>Cu<sub>0.002</sub>Se can reach 0.6 and 0.68 at 300–573 K, surpassing previous p-type PbSe-based polycrystals. This work emphasizes the significant potential of a cost-effective PbSe compound for near-room-temperature cooling applications.\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"81 1\",\"pages\":\"\"},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202502705\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202502705","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

热电冷却技术具有广泛的应用,但受限于商用bi2te3基热电材料中碲(Te)的高成本。本文提出了一种由7对Pb0.988Cu0.002Se (p型)和Pb1.02Cu0.002Se (n型)组成的具有成本效益的对称pbse器件,其冷却温差(ΔTC)分别为32.8和41.0 K,热侧分别保持在303和343 K。与其他基于bi2te3的器件相比,这种低成本的对称pbse器件在近室温热电冷却方面具有优越的成本效益(ΔT/cost)。其高冷却性能主要源于p型Pb0.988Cu0.002Se中先进的载流子和声子输运特性。其中,Pb0.988Cu0.002Se中的Pb空位和Cu取代作为强p型掺杂剂,有效地优化了载流子密度,室温下的最大功率因数为28.69µW cm−1 K−2。此外,晶格内移动的Cu原子显著阻碍了声子的传播,导致晶格的室温热导率为1.10 W m−1 K−1。在300-573 K温度下,p型Pb0.988Cu0.002Se的室温ZT值和平均ZT值分别达到0.6和0.68,优于以往的p型pbse多晶。这项工作强调了具有成本效益的PbSe化合物在近室温冷却应用中的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cost-Effective Symmetric PbSe-Based Device for Thermoelectric Cooling

Cost-Effective Symmetric PbSe-Based Device for Thermoelectric Cooling
Thermoelectric cooling technology has broad applications but is limited by the high cost of tellurium (Te) in commercially available Bi2Te3-based thermoelectric materials. Herein, a cost-effective symmetric PbSe-based device constructed from 7 pairs of Pb0.988Cu0.002Se (p-type) and Pb1.02Cu0.002Se (n-type) is presented, which demonstrates impressive cooling temperature difference (ΔTC) of 32.8 and 41.0 K with the hot side maintained at 303 and 343 K, respectively. This low-cost symmetric PbSe-based device exhibits superior cost-effectiveness (ΔT/cost) for near-room-temperature thermoelectric cooling compared to other Bi2Te3-based devices. Its high cooling performance primarily stems from an advanced carrier and phonon transport properties in p-type Pb0.988Cu0.002Se. Specifically, Pb vacancy and Cu substitution in Pb0.988Cu0.002Se act as strong p-type dopants that effectively optimize carrier density, resulting in a maximum power factor of 28.69 µW cm−1 K−2 at room temperature. Moreover, the mobile Cu atoms within the lattice significantly impede phonon propagation, leading to a low room-temperature lattice thermal conductivity of 1.10 W m−1 K−1. Finally, the room-temperature figure of merit (ZT) and average ZT value in p-type Pb0.988Cu0.002Se can reach 0.6 and 0.68 at 300–573 K, surpassing previous p-type PbSe-based polycrystals. This work emphasizes the significant potential of a cost-effective PbSe compound for near-room-temperature cooling applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信