Yuhui Jiang, Pengfei Guo, Ruihao Chen, Liming Du, Xingchao Shao, Xiuhai Zhang, Yu Zheng, Ning Jia, Zhiyu Fang, Luyao Ma, Xu Zhang, Zhen Li, Chunlei Yang, Yi Hou, Fen Lin, Weimin Li, Zhe Liu, Hongqiang Wang
{"title":"PbSe纳米晶的异质外延使高稳定的宽禁带钙钛矿太阳能电池成为可能","authors":"Yuhui Jiang, Pengfei Guo, Ruihao Chen, Liming Du, Xingchao Shao, Xiuhai Zhang, Yu Zheng, Ning Jia, Zhiyu Fang, Luyao Ma, Xu Zhang, Zhen Li, Chunlei Yang, Yi Hou, Fen Lin, Weimin Li, Zhe Liu, Hongqiang Wang","doi":"10.1002/aenm.202501312","DOIUrl":null,"url":null,"abstract":"The perovskite-based tandem solar cell is one of the promising technological pathways to achieve high efficiency. However, the mixed-halide perovskite top cell is prone to phase segregation under continuous illumination, which leads to rapid degradation of the tandem device's overall power output. To tackle this challenge, ligand-free lead selenide (PbSe) nanocrystals are introduced into the precursor solution to promote the heteroepitaxial growth of mixed-halide perovskite. The incorporation of PbSe results in a high-quality perovskite film with excellent uniformity and low defect density, effectively suppressing halide phase segregation. This improved perovskite thin film enables the fabrication of wide-bandgap (1.68 eV) perovskite Cs<sub>0.05</sub>(FA<sub>0.77</sub>MA<sub>0.23</sub>)<sub>0.95</sub>Pb(I<sub>0.77</sub>Br<sub>0.23</sub>)<sub>3</sub> <i>p</i>-i-<i>n</i> devices, achieving a power conversion efficiency (PCE) of 22.87% and a fill factor (FF) of 84.79%. After 1000 h of maximum power point (MPP) tracking under 1-sun continuous illumination, the perovskite solar cells retain 88% of their initial efficiency. Additionally, by mechanically stacking the semi-transparent perovskite on copper indium gallium selenide (CIGS) solar cells, the 4-terminal tandem cell has demonstrated a PCE of 28.24%.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"23 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heteroepitaxy with PbSe Nanocrystals Enables Highly Stable Wide-Bandgap Perovskite Solar Cells\",\"authors\":\"Yuhui Jiang, Pengfei Guo, Ruihao Chen, Liming Du, Xingchao Shao, Xiuhai Zhang, Yu Zheng, Ning Jia, Zhiyu Fang, Luyao Ma, Xu Zhang, Zhen Li, Chunlei Yang, Yi Hou, Fen Lin, Weimin Li, Zhe Liu, Hongqiang Wang\",\"doi\":\"10.1002/aenm.202501312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The perovskite-based tandem solar cell is one of the promising technological pathways to achieve high efficiency. However, the mixed-halide perovskite top cell is prone to phase segregation under continuous illumination, which leads to rapid degradation of the tandem device's overall power output. To tackle this challenge, ligand-free lead selenide (PbSe) nanocrystals are introduced into the precursor solution to promote the heteroepitaxial growth of mixed-halide perovskite. The incorporation of PbSe results in a high-quality perovskite film with excellent uniformity and low defect density, effectively suppressing halide phase segregation. This improved perovskite thin film enables the fabrication of wide-bandgap (1.68 eV) perovskite Cs<sub>0.05</sub>(FA<sub>0.77</sub>MA<sub>0.23</sub>)<sub>0.95</sub>Pb(I<sub>0.77</sub>Br<sub>0.23</sub>)<sub>3</sub> <i>p</i>-i-<i>n</i> devices, achieving a power conversion efficiency (PCE) of 22.87% and a fill factor (FF) of 84.79%. After 1000 h of maximum power point (MPP) tracking under 1-sun continuous illumination, the perovskite solar cells retain 88% of their initial efficiency. Additionally, by mechanically stacking the semi-transparent perovskite on copper indium gallium selenide (CIGS) solar cells, the 4-terminal tandem cell has demonstrated a PCE of 28.24%.\",\"PeriodicalId\":111,\"journal\":{\"name\":\"Advanced Energy Materials\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":24.4000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aenm.202501312\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202501312","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Heteroepitaxy with PbSe Nanocrystals Enables Highly Stable Wide-Bandgap Perovskite Solar Cells
The perovskite-based tandem solar cell is one of the promising technological pathways to achieve high efficiency. However, the mixed-halide perovskite top cell is prone to phase segregation under continuous illumination, which leads to rapid degradation of the tandem device's overall power output. To tackle this challenge, ligand-free lead selenide (PbSe) nanocrystals are introduced into the precursor solution to promote the heteroepitaxial growth of mixed-halide perovskite. The incorporation of PbSe results in a high-quality perovskite film with excellent uniformity and low defect density, effectively suppressing halide phase segregation. This improved perovskite thin film enables the fabrication of wide-bandgap (1.68 eV) perovskite Cs0.05(FA0.77MA0.23)0.95Pb(I0.77Br0.23)3p-i-n devices, achieving a power conversion efficiency (PCE) of 22.87% and a fill factor (FF) of 84.79%. After 1000 h of maximum power point (MPP) tracking under 1-sun continuous illumination, the perovskite solar cells retain 88% of their initial efficiency. Additionally, by mechanically stacking the semi-transparent perovskite on copper indium gallium selenide (CIGS) solar cells, the 4-terminal tandem cell has demonstrated a PCE of 28.24%.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.