PbSe纳米晶的异质外延使高稳定的宽禁带钙钛矿太阳能电池成为可能

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Yuhui Jiang, Pengfei Guo, Ruihao Chen, Liming Du, Xingchao Shao, Xiuhai Zhang, Yu Zheng, Ning Jia, Zhiyu Fang, Luyao Ma, Xu Zhang, Zhen Li, Chunlei Yang, Yi Hou, Fen Lin, Weimin Li, Zhe Liu, Hongqiang Wang
{"title":"PbSe纳米晶的异质外延使高稳定的宽禁带钙钛矿太阳能电池成为可能","authors":"Yuhui Jiang, Pengfei Guo, Ruihao Chen, Liming Du, Xingchao Shao, Xiuhai Zhang, Yu Zheng, Ning Jia, Zhiyu Fang, Luyao Ma, Xu Zhang, Zhen Li, Chunlei Yang, Yi Hou, Fen Lin, Weimin Li, Zhe Liu, Hongqiang Wang","doi":"10.1002/aenm.202501312","DOIUrl":null,"url":null,"abstract":"The perovskite-based tandem solar cell is one of the promising technological pathways to achieve high efficiency. However, the mixed-halide perovskite top cell is prone to phase segregation under continuous illumination, which leads to rapid degradation of the tandem device's overall power output. To tackle this challenge, ligand-free lead selenide (PbSe) nanocrystals are introduced into the precursor solution to promote the heteroepitaxial growth of mixed-halide perovskite. The incorporation of PbSe results in a high-quality perovskite film with excellent uniformity and low defect density, effectively suppressing halide phase segregation. This improved perovskite thin film enables the fabrication of wide-bandgap (1.68 eV) perovskite Cs<sub>0.05</sub>(FA<sub>0.77</sub>MA<sub>0.23</sub>)<sub>0.95</sub>Pb(I<sub>0.77</sub>Br<sub>0.23</sub>)<sub>3</sub> <i>p</i>-i-<i>n</i> devices, achieving a power conversion efficiency (PCE) of 22.87% and a fill factor (FF) of 84.79%. After 1000 h of maximum power point (MPP) tracking under 1-sun continuous illumination, the perovskite solar cells retain 88% of their initial efficiency. Additionally, by mechanically stacking the semi-transparent perovskite on copper indium gallium selenide (CIGS) solar cells, the 4-terminal tandem cell has demonstrated a PCE of 28.24%.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"23 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heteroepitaxy with PbSe Nanocrystals Enables Highly Stable Wide-Bandgap Perovskite Solar Cells\",\"authors\":\"Yuhui Jiang, Pengfei Guo, Ruihao Chen, Liming Du, Xingchao Shao, Xiuhai Zhang, Yu Zheng, Ning Jia, Zhiyu Fang, Luyao Ma, Xu Zhang, Zhen Li, Chunlei Yang, Yi Hou, Fen Lin, Weimin Li, Zhe Liu, Hongqiang Wang\",\"doi\":\"10.1002/aenm.202501312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The perovskite-based tandem solar cell is one of the promising technological pathways to achieve high efficiency. However, the mixed-halide perovskite top cell is prone to phase segregation under continuous illumination, which leads to rapid degradation of the tandem device's overall power output. To tackle this challenge, ligand-free lead selenide (PbSe) nanocrystals are introduced into the precursor solution to promote the heteroepitaxial growth of mixed-halide perovskite. The incorporation of PbSe results in a high-quality perovskite film with excellent uniformity and low defect density, effectively suppressing halide phase segregation. This improved perovskite thin film enables the fabrication of wide-bandgap (1.68 eV) perovskite Cs<sub>0.05</sub>(FA<sub>0.77</sub>MA<sub>0.23</sub>)<sub>0.95</sub>Pb(I<sub>0.77</sub>Br<sub>0.23</sub>)<sub>3</sub> <i>p</i>-i-<i>n</i> devices, achieving a power conversion efficiency (PCE) of 22.87% and a fill factor (FF) of 84.79%. After 1000 h of maximum power point (MPP) tracking under 1-sun continuous illumination, the perovskite solar cells retain 88% of their initial efficiency. Additionally, by mechanically stacking the semi-transparent perovskite on copper indium gallium selenide (CIGS) solar cells, the 4-terminal tandem cell has demonstrated a PCE of 28.24%.\",\"PeriodicalId\":111,\"journal\":{\"name\":\"Advanced Energy Materials\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":24.4000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aenm.202501312\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202501312","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

钙钛矿基串联太阳能电池是实现高效率的有前途的技术途径之一。然而,混合卤化物钙钛矿顶部电池在连续照明下容易发生相偏析,从而导致串联装置的整体输出功率迅速下降。为了解决这一挑战,将无配体硒化铅(PbSe)纳米晶体引入前驱体溶液中,以促进混合卤化物钙钛矿的异质外延生长。PbSe的掺入得到了高质量的钙钛矿膜,具有优异的均匀性和低缺陷密度,有效地抑制了卤化物相偏析。这种改进的钙钛矿薄膜可以制作宽带隙(1.68 eV)钙钛矿Cs0.05(FA0.77MA0.23)0.95Pb(I0.77Br0.23)3 p-i-n器件,功率转换效率(PCE)为22.87%,填充系数(FF)为84.79%。在1个太阳连续照射下进行1000小时的最大功率点(MPP)跟踪后,钙钛矿太阳能电池保持了其初始效率的88%。此外,通过机械地将半透明钙钛矿堆叠在铜铟硒化镓(CIGS)太阳能电池上,四端串联电池的PCE达到28.24%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Heteroepitaxy with PbSe Nanocrystals Enables Highly Stable Wide-Bandgap Perovskite Solar Cells

Heteroepitaxy with PbSe Nanocrystals Enables Highly Stable Wide-Bandgap Perovskite Solar Cells
The perovskite-based tandem solar cell is one of the promising technological pathways to achieve high efficiency. However, the mixed-halide perovskite top cell is prone to phase segregation under continuous illumination, which leads to rapid degradation of the tandem device's overall power output. To tackle this challenge, ligand-free lead selenide (PbSe) nanocrystals are introduced into the precursor solution to promote the heteroepitaxial growth of mixed-halide perovskite. The incorporation of PbSe results in a high-quality perovskite film with excellent uniformity and low defect density, effectively suppressing halide phase segregation. This improved perovskite thin film enables the fabrication of wide-bandgap (1.68 eV) perovskite Cs0.05(FA0.77MA0.23)0.95Pb(I0.77Br0.23)3 p-i-n devices, achieving a power conversion efficiency (PCE) of 22.87% and a fill factor (FF) of 84.79%. After 1000 h of maximum power point (MPP) tracking under 1-sun continuous illumination, the perovskite solar cells retain 88% of their initial efficiency. Additionally, by mechanically stacking the semi-transparent perovskite on copper indium gallium selenide (CIGS) solar cells, the 4-terminal tandem cell has demonstrated a PCE of 28.24%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信