Jia Ren, Ping Shi, Xinyan Zu, Lei Ding, Feng Liu, Yuzheng Wang, Yuhan Wu, Gui-Mei Shi, Yusheng Wu, Laishi Li
{"title":"二维材料基复合材料微波吸收的挑战与未来展望","authors":"Jia Ren, Ping Shi, Xinyan Zu, Lei Ding, Feng Liu, Yuzheng Wang, Yuhan Wu, Gui-Mei Shi, Yusheng Wu, Laishi Li","doi":"10.1039/d5nr00925a","DOIUrl":null,"url":null,"abstract":"The widespread use of electronic devices inevitably brings about the problem of electromagnetic pollution. As a result, it is important and urgent to develop efficient absorbing materials to alleviate the increasingly pollution issues. Recently, two-dimensional (2D) material-based microwave absorbers have attracted wide attention in microwave absorption due to their unique lamellar structure, large specific surface area, low density, good thermal and chemical stability. Through various modulation strategies such as structure configuration, pore/defect engineering, heteroatom doping and coupling functional materials, 2D materials or 2D material-based composites exhibit excellent microwave absorption performance. In this review, the absorption mechanism is firstly introduced and then the latest progress in 2D material-based microwave absorbers is profoundly reviewed. The challenges and future prospects for graphene, h-BN, and MXene-based microwave absorbers are discussed in the final part. This timely review aims to provide guidance or stimulation to develop advanced multifunctional 2D material-based microwave absorbers in this rapidly blossoming field.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":"43 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Challenges and Future Prospects of the 2D Material-based Composites for Microwave Absorption\",\"authors\":\"Jia Ren, Ping Shi, Xinyan Zu, Lei Ding, Feng Liu, Yuzheng Wang, Yuhan Wu, Gui-Mei Shi, Yusheng Wu, Laishi Li\",\"doi\":\"10.1039/d5nr00925a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The widespread use of electronic devices inevitably brings about the problem of electromagnetic pollution. As a result, it is important and urgent to develop efficient absorbing materials to alleviate the increasingly pollution issues. Recently, two-dimensional (2D) material-based microwave absorbers have attracted wide attention in microwave absorption due to their unique lamellar structure, large specific surface area, low density, good thermal and chemical stability. Through various modulation strategies such as structure configuration, pore/defect engineering, heteroatom doping and coupling functional materials, 2D materials or 2D material-based composites exhibit excellent microwave absorption performance. In this review, the absorption mechanism is firstly introduced and then the latest progress in 2D material-based microwave absorbers is profoundly reviewed. The challenges and future prospects for graphene, h-BN, and MXene-based microwave absorbers are discussed in the final part. This timely review aims to provide guidance or stimulation to develop advanced multifunctional 2D material-based microwave absorbers in this rapidly blossoming field.\",\"PeriodicalId\":92,\"journal\":{\"name\":\"Nanoscale\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5nr00925a\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5nr00925a","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Challenges and Future Prospects of the 2D Material-based Composites for Microwave Absorption
The widespread use of electronic devices inevitably brings about the problem of electromagnetic pollution. As a result, it is important and urgent to develop efficient absorbing materials to alleviate the increasingly pollution issues. Recently, two-dimensional (2D) material-based microwave absorbers have attracted wide attention in microwave absorption due to their unique lamellar structure, large specific surface area, low density, good thermal and chemical stability. Through various modulation strategies such as structure configuration, pore/defect engineering, heteroatom doping and coupling functional materials, 2D materials or 2D material-based composites exhibit excellent microwave absorption performance. In this review, the absorption mechanism is firstly introduced and then the latest progress in 2D material-based microwave absorbers is profoundly reviewed. The challenges and future prospects for graphene, h-BN, and MXene-based microwave absorbers are discussed in the final part. This timely review aims to provide guidance or stimulation to develop advanced multifunctional 2D material-based microwave absorbers in this rapidly blossoming field.
期刊介绍:
Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.