用于植物高通量微量营养素输送和液液连续监测的丝微针的纳米制造

IF 38.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yunteng Cao, Doyoon Kim, Sally Shuxian Koh, Zheng Li, Federica Rigoldi, Julia Eva Fortmueller, Kasey Goh, Yilin Zhang, Eugene J. Lim, Hui Sun, Elise Uyehara, Raju Cheerlavancha, Yangyang Han, Rajeev J. Ram, Daisuke Urano, Benedetto Marelli
{"title":"用于植物高通量微量营养素输送和液液连续监测的丝微针的纳米制造","authors":"Yunteng Cao, Doyoon Kim, Sally Shuxian Koh, Zheng Li, Federica Rigoldi, Julia Eva Fortmueller, Kasey Goh, Yilin Zhang, Eugene J. Lim, Hui Sun, Elise Uyehara, Raju Cheerlavancha, Yangyang Han, Rajeev J. Ram, Daisuke Urano, Benedetto Marelli","doi":"10.1038/s41565-025-01923-2","DOIUrl":null,"url":null,"abstract":"<p>Biomaterials bridging the biotic–abiotic interface in plants offer the opportunity to precisely deliver agrochemicals and continuously monitor plant health, with the goals of increasing resilience to climate change, enhancing crop production and mitigating environmental impact. In this study we report the manipulation of silk fibroin assembly with inorganics nucleation at their phase front to nanomanufacture porous and hollow microneedles that can be interfaced with plants. Plant growth analysis and quantification of wounding gene expression show a non-significant systemic wounding response to the injection of silk microneedles in tomato plants. Microneedles with a hollow structure enable the systemic delivery of plant micronutrients to treat chlorosis in tomato plants and crop biofortification through transport of human micronutrients injected in the petiole and loaded into tomato fruits. Hollow microneedles also provide access to plant vasculature for sap sampling, enabling continuous monitoring and early detection of phytoaccumulation of environmental contaminants such as cadmium.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"8 1","pages":""},"PeriodicalIF":38.1000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanofabrication of silk microneedles for high-throughput micronutrient delivery and continuous sap monitoring in plants\",\"authors\":\"Yunteng Cao, Doyoon Kim, Sally Shuxian Koh, Zheng Li, Federica Rigoldi, Julia Eva Fortmueller, Kasey Goh, Yilin Zhang, Eugene J. Lim, Hui Sun, Elise Uyehara, Raju Cheerlavancha, Yangyang Han, Rajeev J. Ram, Daisuke Urano, Benedetto Marelli\",\"doi\":\"10.1038/s41565-025-01923-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Biomaterials bridging the biotic–abiotic interface in plants offer the opportunity to precisely deliver agrochemicals and continuously monitor plant health, with the goals of increasing resilience to climate change, enhancing crop production and mitigating environmental impact. In this study we report the manipulation of silk fibroin assembly with inorganics nucleation at their phase front to nanomanufacture porous and hollow microneedles that can be interfaced with plants. Plant growth analysis and quantification of wounding gene expression show a non-significant systemic wounding response to the injection of silk microneedles in tomato plants. Microneedles with a hollow structure enable the systemic delivery of plant micronutrients to treat chlorosis in tomato plants and crop biofortification through transport of human micronutrients injected in the petiole and loaded into tomato fruits. Hollow microneedles also provide access to plant vasculature for sap sampling, enabling continuous monitoring and early detection of phytoaccumulation of environmental contaminants such as cadmium.</p>\",\"PeriodicalId\":18915,\"journal\":{\"name\":\"Nature nanotechnology\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":38.1000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41565-025-01923-2\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41565-025-01923-2","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

弥合植物中生物-非生物界面的生物材料为精确输送农用化学品和持续监测植物健康提供了机会,其目标是提高对气候变化的适应能力,提高作物产量和减轻环境影响。在本研究中,我们报道了在相前沿具有无机物成核的丝素蛋白组装的操纵,以制造可以与植物界面的多孔和空心微针。植物生长分析和损伤基因表达定量分析表明,丝微针注射对番茄植株有不显著的全身损伤反应。具有中空结构的微针能够通过人体微量营养素的运输注入叶柄并装载到番茄果实中,从而实现植物微量营养素的系统输送,以治疗番茄植株的黄化和作物生物强化。空心微针还提供了进入植物脉管系统进行汁液取样的途径,从而能够持续监测和早期发现镉等环境污染物的植物积累。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nanofabrication of silk microneedles for high-throughput micronutrient delivery and continuous sap monitoring in plants

Nanofabrication of silk microneedles for high-throughput micronutrient delivery and continuous sap monitoring in plants

Biomaterials bridging the biotic–abiotic interface in plants offer the opportunity to precisely deliver agrochemicals and continuously monitor plant health, with the goals of increasing resilience to climate change, enhancing crop production and mitigating environmental impact. In this study we report the manipulation of silk fibroin assembly with inorganics nucleation at their phase front to nanomanufacture porous and hollow microneedles that can be interfaced with plants. Plant growth analysis and quantification of wounding gene expression show a non-significant systemic wounding response to the injection of silk microneedles in tomato plants. Microneedles with a hollow structure enable the systemic delivery of plant micronutrients to treat chlorosis in tomato plants and crop biofortification through transport of human micronutrients injected in the petiole and loaded into tomato fruits. Hollow microneedles also provide access to plant vasculature for sap sampling, enabling continuous monitoring and early detection of phytoaccumulation of environmental contaminants such as cadmium.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature nanotechnology
Nature nanotechnology 工程技术-材料科学:综合
CiteScore
59.70
自引率
0.80%
发文量
196
审稿时长
4-8 weeks
期刊介绍: Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations. Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信