Zachariah O. Martin, Alexander Senichev, Pranshu Maan, Mustafa G. Ozlu, Miroslava Marinova, Zhongxia Shang, Alexei Lagutchev, Alexandra Boltasseva, Vladimir M. Shalaev
{"title":"pecvd生长的氮化硅薄膜中的单光子发射器:从材料生长到光物理性质","authors":"Zachariah O. Martin, Alexander Senichev, Pranshu Maan, Mustafa G. Ozlu, Miroslava Marinova, Zhongxia Shang, Alexei Lagutchev, Alexandra Boltasseva, Vladimir M. Shalaev","doi":"10.1515/nanoph-2024-0506","DOIUrl":null,"url":null,"abstract":"Silicon nitride (SiN) is a key material for quantum photonics due to its wide transparency window, high refractive index, low optical losses, and semiconductor foundry compatibility. We study the formation of single-photon emitters in SiN films grown by plasma-enhanced chemical vapor deposition (PECVD), exploring their photophysical properties and dependence on growth conditions. Emitters were observed across the entire range of nitrogen-to-silicon precursor ratios, from silicon-rich to nitrogen-rich conditions, enabled by the low background fluorescence. We demonstrate single-photon emitters in SiN films with a higher refractive index (1.8–1.9) compared to our previous reports (∼1.7). Notably, nitrogen-rich, thinner films yield particularly bright emitters with shorter emission lifetimes, likely due to more efficient annealing. Silicon-rich SiN films exhibit red-shifted emission, suggesting that composition may provide a mechanism for wavelength tuning. These findings establish the feasibility of emitters formation in foundry standard PECVD tools, advancing the scalability and lab-to-fab transition of SiN-based quantum photonic technologies.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"35 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-photon emitters in PECVD-grown silicon nitride films: from material growth to photophysical properties\",\"authors\":\"Zachariah O. Martin, Alexander Senichev, Pranshu Maan, Mustafa G. Ozlu, Miroslava Marinova, Zhongxia Shang, Alexei Lagutchev, Alexandra Boltasseva, Vladimir M. Shalaev\",\"doi\":\"10.1515/nanoph-2024-0506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Silicon nitride (SiN) is a key material for quantum photonics due to its wide transparency window, high refractive index, low optical losses, and semiconductor foundry compatibility. We study the formation of single-photon emitters in SiN films grown by plasma-enhanced chemical vapor deposition (PECVD), exploring their photophysical properties and dependence on growth conditions. Emitters were observed across the entire range of nitrogen-to-silicon precursor ratios, from silicon-rich to nitrogen-rich conditions, enabled by the low background fluorescence. We demonstrate single-photon emitters in SiN films with a higher refractive index (1.8–1.9) compared to our previous reports (∼1.7). Notably, nitrogen-rich, thinner films yield particularly bright emitters with shorter emission lifetimes, likely due to more efficient annealing. Silicon-rich SiN films exhibit red-shifted emission, suggesting that composition may provide a mechanism for wavelength tuning. These findings establish the feasibility of emitters formation in foundry standard PECVD tools, advancing the scalability and lab-to-fab transition of SiN-based quantum photonic technologies.\",\"PeriodicalId\":19027,\"journal\":{\"name\":\"Nanophotonics\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1515/nanoph-2024-0506\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0506","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Single-photon emitters in PECVD-grown silicon nitride films: from material growth to photophysical properties
Silicon nitride (SiN) is a key material for quantum photonics due to its wide transparency window, high refractive index, low optical losses, and semiconductor foundry compatibility. We study the formation of single-photon emitters in SiN films grown by plasma-enhanced chemical vapor deposition (PECVD), exploring their photophysical properties and dependence on growth conditions. Emitters were observed across the entire range of nitrogen-to-silicon precursor ratios, from silicon-rich to nitrogen-rich conditions, enabled by the low background fluorescence. We demonstrate single-photon emitters in SiN films with a higher refractive index (1.8–1.9) compared to our previous reports (∼1.7). Notably, nitrogen-rich, thinner films yield particularly bright emitters with shorter emission lifetimes, likely due to more efficient annealing. Silicon-rich SiN films exhibit red-shifted emission, suggesting that composition may provide a mechanism for wavelength tuning. These findings establish the feasibility of emitters formation in foundry standard PECVD tools, advancing the scalability and lab-to-fab transition of SiN-based quantum photonic technologies.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.