Max Rietkerk, Vanessa Skiba, Els Weinans, Raphaël Hébert, Thomas Laepple
{"title":"气候临界点早期预警信号的模糊性","authors":"Max Rietkerk, Vanessa Skiba, Els Weinans, Raphaël Hébert, Thomas Laepple","doi":"10.1038/s41558-025-02328-8","DOIUrl":null,"url":null,"abstract":"<p>There is concern that climate change might lead to abrupt and irreversible changes in parts of the Earth system at so-called tipping points. Theoretical considerations suggest that statistical measures can be used to detect early warning signals (EWSs) for reduced resilience, which could be interpreted as an increased proximity to climate tipping points. Here we discuss limitations of commonly used EWSs and their detection and discuss how alternative explanations can lead to resilience loss in the absence of tipping points. We argue for better testing of the existence of tipping points, beyond the application of EWSs, and propose a method to better quantify the probability of approaching tipping points using EWSs.</p>","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":"16 1","pages":""},"PeriodicalIF":29.6000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ambiguity of early warning signals for climate tipping points\",\"authors\":\"Max Rietkerk, Vanessa Skiba, Els Weinans, Raphaël Hébert, Thomas Laepple\",\"doi\":\"10.1038/s41558-025-02328-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>There is concern that climate change might lead to abrupt and irreversible changes in parts of the Earth system at so-called tipping points. Theoretical considerations suggest that statistical measures can be used to detect early warning signals (EWSs) for reduced resilience, which could be interpreted as an increased proximity to climate tipping points. Here we discuss limitations of commonly used EWSs and their detection and discuss how alternative explanations can lead to resilience loss in the absence of tipping points. We argue for better testing of the existence of tipping points, beyond the application of EWSs, and propose a method to better quantify the probability of approaching tipping points using EWSs.</p>\",\"PeriodicalId\":18974,\"journal\":{\"name\":\"Nature Climate Change\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":29.6000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Climate Change\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1038/s41558-025-02328-8\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Climate Change","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41558-025-02328-8","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Ambiguity of early warning signals for climate tipping points
There is concern that climate change might lead to abrupt and irreversible changes in parts of the Earth system at so-called tipping points. Theoretical considerations suggest that statistical measures can be used to detect early warning signals (EWSs) for reduced resilience, which could be interpreted as an increased proximity to climate tipping points. Here we discuss limitations of commonly used EWSs and their detection and discuss how alternative explanations can lead to resilience loss in the absence of tipping points. We argue for better testing of the existence of tipping points, beyond the application of EWSs, and propose a method to better quantify the probability of approaching tipping points using EWSs.
期刊介绍:
Nature Climate Change is dedicated to addressing the scientific challenge of understanding Earth's changing climate and its societal implications. As a monthly journal, it publishes significant and cutting-edge research on the nature, causes, and impacts of global climate change, as well as its implications for the economy, policy, and the world at large.
The journal publishes original research spanning the natural and social sciences, synthesizing interdisciplinary research to provide a comprehensive understanding of climate change. It upholds the high standards set by all Nature-branded journals, ensuring top-tier original research through a fair and rigorous review process, broad readership access, high standards of copy editing and production, rapid publication, and independence from academic societies and other vested interests.
Nature Climate Change serves as a platform for discussion among experts, publishing opinion, analysis, and review articles. It also features Research Highlights to highlight important developments in the field and original reporting from renowned science journalists in the form of feature articles.
Topics covered in the journal include adaptation, atmospheric science, ecology, economics, energy, impacts and vulnerability, mitigation, oceanography, policy, sociology, and sustainability, among others.