Yoojin Kim, Yeongju Yeo, Minju Kim, Yong-Wook Son, Joowon Kim, Koung Li Kim, Seohee Kim, Seokmin Oh, Yunha Kim, Hyowoo Lee, Hyun-Woo Park, Dongsoo Lee, Sung Jin Lee, Changmin Kang, Hongyoung Choi, Chan Soon Park, Seung-Pyo Lee, Wonhee Suh, Jae-Hyung Jang
{"title":"一种高度移动的腺相关病毒靶向血管平滑肌细胞治疗肺动脉高压","authors":"Yoojin Kim, Yeongju Yeo, Minju Kim, Yong-Wook Son, Joowon Kim, Koung Li Kim, Seohee Kim, Seokmin Oh, Yunha Kim, Hyowoo Lee, Hyun-Woo Park, Dongsoo Lee, Sung Jin Lee, Changmin Kang, Hongyoung Choi, Chan Soon Park, Seung-Pyo Lee, Wonhee Suh, Jae-Hyung Jang","doi":"10.1038/s41551-025-01379-8","DOIUrl":null,"url":null,"abstract":"<p>In pulmonary arterial hypertension (PAH), a phenotypic switch in pulmonary arterial smooth muscle cells (PASMCs) that is primarily caused by aberrant gene regulatory networks can lead to dysregulated vascular remodelling, heart failure or death. No curative therapies for PAH are currently available, presumably because of a lack of viral vectors specifically targeting PASMCs. Here we show that a highly mobile and PASMC-tropic adeno-associated virus variant developed via directed evolution overcomes physical barriers that inhibit its transfer from bronchial airways to vascular layers, ultimately boosting therapeutic efficacy in murine models of PAH. Intratracheal administration of the adeno-associated virus variant carrying a transgene for fibroblast growth factor 12—a key factor regulating the PASMC phenotype—suppressed pulmonary vascular remodelling, prevented the development of PAH in mice and reversed established PAH in rats. The variant’s mobility and enhanced tropism for PASMCs may enable curative treatments for PAH.</p>","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"18 1","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A highly mobile adeno-associated virus targeting vascular smooth muscle cells for the treatment of pulmonary arterial hypertension\",\"authors\":\"Yoojin Kim, Yeongju Yeo, Minju Kim, Yong-Wook Son, Joowon Kim, Koung Li Kim, Seohee Kim, Seokmin Oh, Yunha Kim, Hyowoo Lee, Hyun-Woo Park, Dongsoo Lee, Sung Jin Lee, Changmin Kang, Hongyoung Choi, Chan Soon Park, Seung-Pyo Lee, Wonhee Suh, Jae-Hyung Jang\",\"doi\":\"10.1038/s41551-025-01379-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In pulmonary arterial hypertension (PAH), a phenotypic switch in pulmonary arterial smooth muscle cells (PASMCs) that is primarily caused by aberrant gene regulatory networks can lead to dysregulated vascular remodelling, heart failure or death. No curative therapies for PAH are currently available, presumably because of a lack of viral vectors specifically targeting PASMCs. Here we show that a highly mobile and PASMC-tropic adeno-associated virus variant developed via directed evolution overcomes physical barriers that inhibit its transfer from bronchial airways to vascular layers, ultimately boosting therapeutic efficacy in murine models of PAH. Intratracheal administration of the adeno-associated virus variant carrying a transgene for fibroblast growth factor 12—a key factor regulating the PASMC phenotype—suppressed pulmonary vascular remodelling, prevented the development of PAH in mice and reversed established PAH in rats. The variant’s mobility and enhanced tropism for PASMCs may enable curative treatments for PAH.</p>\",\"PeriodicalId\":19063,\"journal\":{\"name\":\"Nature Biomedical Engineering\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41551-025-01379-8\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41551-025-01379-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
A highly mobile adeno-associated virus targeting vascular smooth muscle cells for the treatment of pulmonary arterial hypertension
In pulmonary arterial hypertension (PAH), a phenotypic switch in pulmonary arterial smooth muscle cells (PASMCs) that is primarily caused by aberrant gene regulatory networks can lead to dysregulated vascular remodelling, heart failure or death. No curative therapies for PAH are currently available, presumably because of a lack of viral vectors specifically targeting PASMCs. Here we show that a highly mobile and PASMC-tropic adeno-associated virus variant developed via directed evolution overcomes physical barriers that inhibit its transfer from bronchial airways to vascular layers, ultimately boosting therapeutic efficacy in murine models of PAH. Intratracheal administration of the adeno-associated virus variant carrying a transgene for fibroblast growth factor 12—a key factor regulating the PASMC phenotype—suppressed pulmonary vascular remodelling, prevented the development of PAH in mice and reversed established PAH in rats. The variant’s mobility and enhanced tropism for PASMCs may enable curative treatments for PAH.
期刊介绍:
Nature Biomedical Engineering is an online-only monthly journal that was launched in January 2017. It aims to publish original research, reviews, and commentary focusing on applied biomedicine and health technology. The journal targets a diverse audience, including life scientists who are involved in developing experimental or computational systems and methods to enhance our understanding of human physiology. It also covers biomedical researchers and engineers who are engaged in designing or optimizing therapies, assays, devices, or procedures for diagnosing or treating diseases. Additionally, clinicians, who make use of research outputs to evaluate patient health or administer therapy in various clinical settings and healthcare contexts, are also part of the target audience.