exoALMA。7。基准流体力学和辐射传输代码

Jaehan Bae, Mario Flock, Andrés Izquierdo, Kazuhiro Kanagawa, Tomohiro Ono, Christophe Pinte, Daniel J. Price, Giovanni P. Rosotti, Gaylor Wafflard-Fernandez, Geoffroy Lesur, ‪Frédéric Masset, Sean M. Andrews, Marcelo Barraza-Alfaro, Myriam Benisty, Gianni Cataldi, Nicolás Cuello, Pietro Curone, Ian Czekala, Stefano Facchini, Daniele Fasano, Maria Galloway-Sprietsma, Cassandra Hall, Iain Hammond, Jane Huang, Giuseppe Lodato, Cristiano Longarini, Jochen Stadler, Richard Teague, David J. Wilner, Andrew J. Winter, Lisa Wölfer and Tomohiro C. Yoshida
{"title":"exoALMA。7。基准流体力学和辐射传输代码","authors":"Jaehan Bae, Mario Flock, Andrés Izquierdo, Kazuhiro Kanagawa, Tomohiro Ono, Christophe Pinte, Daniel J. Price, Giovanni P. Rosotti, Gaylor Wafflard-Fernandez, Geoffroy Lesur, ‪Frédéric Masset, Sean M. Andrews, Marcelo Barraza-Alfaro, Myriam Benisty, Gianni Cataldi, Nicolás Cuello, Pietro Curone, Ian Czekala, Stefano Facchini, Daniele Fasano, Maria Galloway-Sprietsma, Cassandra Hall, Iain Hammond, Jane Huang, Giuseppe Lodato, Cristiano Longarini, Jochen Stadler, Richard Teague, David J. Wilner, Andrew J. Winter, Lisa Wölfer and Tomohiro C. Yoshida","doi":"10.3847/2041-8213/adc436","DOIUrl":null,"url":null,"abstract":"Forward modeling is often used to interpret substructures observed in protoplanetary disks. To ensure the robustness and consistency of the current forward-modeling approach from the community, we conducted a systematic comparison of various hydrodynamics and radiative transfer codes. Using four grid-based hydrodynamics codes (FARGO3D, Idefix, Athena++, and PLUTO) and a smoothed-particle hydrodynamics code (Phantom), we simulated a protoplanetary disk with an embedded giant planet. We then used two radiative transfer codes (mcfost and RADMC-3D) to calculate disk temperatures and create synthetic 12CO cubes. Finally, we retrieved the location of the planet from the synthetic cubes using DISCMINER. We found strong consistency between the hydrodynamics codes, particularly in the density and velocity perturbations associated with planet-driven spirals. We also found a good agreement between the two radiative transfer codes: the disk temperature in mcfost and RADMC-3D models agrees within ≲3% everywhere in the domain. In synthetic 12CO channel maps, this results in brightness temperature differences within ±1.5 K in all our models. This good agreement ensures consistent retrieval of planet’s radial/azimuthal location with only a few percent of scatter, with velocity perturbations varying ≲20% among the models. Notably, while the planet-opened gap is shallower in the Phantom simulation, we found that this does not impact the planet location retrieval. In summary, our results demonstrate that any combination of the tested hydrodynamics and radiative transfer codes can be used to reliably model and interpret planet-driven kinematic perturbations.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"271 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"exoALMA. VII. Benchmarking Hydrodynamics and Radiative Transfer Codes\",\"authors\":\"Jaehan Bae, Mario Flock, Andrés Izquierdo, Kazuhiro Kanagawa, Tomohiro Ono, Christophe Pinte, Daniel J. Price, Giovanni P. Rosotti, Gaylor Wafflard-Fernandez, Geoffroy Lesur, ‪Frédéric Masset, Sean M. Andrews, Marcelo Barraza-Alfaro, Myriam Benisty, Gianni Cataldi, Nicolás Cuello, Pietro Curone, Ian Czekala, Stefano Facchini, Daniele Fasano, Maria Galloway-Sprietsma, Cassandra Hall, Iain Hammond, Jane Huang, Giuseppe Lodato, Cristiano Longarini, Jochen Stadler, Richard Teague, David J. Wilner, Andrew J. Winter, Lisa Wölfer and Tomohiro C. Yoshida\",\"doi\":\"10.3847/2041-8213/adc436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Forward modeling is often used to interpret substructures observed in protoplanetary disks. To ensure the robustness and consistency of the current forward-modeling approach from the community, we conducted a systematic comparison of various hydrodynamics and radiative transfer codes. Using four grid-based hydrodynamics codes (FARGO3D, Idefix, Athena++, and PLUTO) and a smoothed-particle hydrodynamics code (Phantom), we simulated a protoplanetary disk with an embedded giant planet. We then used two radiative transfer codes (mcfost and RADMC-3D) to calculate disk temperatures and create synthetic 12CO cubes. Finally, we retrieved the location of the planet from the synthetic cubes using DISCMINER. We found strong consistency between the hydrodynamics codes, particularly in the density and velocity perturbations associated with planet-driven spirals. We also found a good agreement between the two radiative transfer codes: the disk temperature in mcfost and RADMC-3D models agrees within ≲3% everywhere in the domain. In synthetic 12CO channel maps, this results in brightness temperature differences within ±1.5 K in all our models. This good agreement ensures consistent retrieval of planet’s radial/azimuthal location with only a few percent of scatter, with velocity perturbations varying ≲20% among the models. Notably, while the planet-opened gap is shallower in the Phantom simulation, we found that this does not impact the planet location retrieval. In summary, our results demonstrate that any combination of the tested hydrodynamics and radiative transfer codes can be used to reliably model and interpret planet-driven kinematic perturbations.\",\"PeriodicalId\":501814,\"journal\":{\"name\":\"The Astrophysical Journal Letters\",\"volume\":\"271 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astrophysical Journal Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/2041-8213/adc436\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/adc436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

正演模拟常用于解释在原行星盘中观察到的子结构。为了确保目前社区正演模拟方法的鲁棒性和一致性,我们对各种流体力学和辐射传输代码进行了系统比较。使用四个基于网格的流体力学代码(FARGO3D、Idefix、Athena++和PLUTO)和一个光滑粒子流体力学代码(Phantom),我们模拟了一个嵌入巨行星的原行星盘。然后我们使用两个辐射传输代码(mcfost和RADMC-3D)来计算磁盘温度并创建合成的12CO立方体。最后,我们使用DISCMINER从合成立方体中检索行星的位置。我们发现流体力学代码之间有很强的一致性,特别是在与行星驱动的螺旋相关的密度和速度扰动方面。我们还发现两种辐射传输代码之间的一致性很好:mcfost和RADMC-3D模型的磁盘温度在区域内的任何地方都一致在> 3%以内。在合成12CO通道图中,这导致我们所有模型的亮度温度差在±1.5 K以内。这种良好的一致性确保了只有百分之几的散射就能一致地检索行星的径向/方位角位置,模型之间的速度扰动变化为≤20%。值得注意的是,虽然在Phantom模拟中行星打开的间隙较浅,但我们发现这并不影响行星位置检索。总之,我们的结果表明,测试流体力学和辐射传递代码的任何组合都可以用来可靠地建模和解释行星驱动的运动学扰动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
exoALMA. VII. Benchmarking Hydrodynamics and Radiative Transfer Codes
Forward modeling is often used to interpret substructures observed in protoplanetary disks. To ensure the robustness and consistency of the current forward-modeling approach from the community, we conducted a systematic comparison of various hydrodynamics and radiative transfer codes. Using four grid-based hydrodynamics codes (FARGO3D, Idefix, Athena++, and PLUTO) and a smoothed-particle hydrodynamics code (Phantom), we simulated a protoplanetary disk with an embedded giant planet. We then used two radiative transfer codes (mcfost and RADMC-3D) to calculate disk temperatures and create synthetic 12CO cubes. Finally, we retrieved the location of the planet from the synthetic cubes using DISCMINER. We found strong consistency between the hydrodynamics codes, particularly in the density and velocity perturbations associated with planet-driven spirals. We also found a good agreement between the two radiative transfer codes: the disk temperature in mcfost and RADMC-3D models agrees within ≲3% everywhere in the domain. In synthetic 12CO channel maps, this results in brightness temperature differences within ±1.5 K in all our models. This good agreement ensures consistent retrieval of planet’s radial/azimuthal location with only a few percent of scatter, with velocity perturbations varying ≲20% among the models. Notably, while the planet-opened gap is shallower in the Phantom simulation, we found that this does not impact the planet location retrieval. In summary, our results demonstrate that any combination of the tested hydrodynamics and radiative transfer codes can be used to reliably model and interpret planet-driven kinematic perturbations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信