exoALMA。V.气体发射表面和温度结构

Maria Galloway-Sprietsma, Jaehan Bae, Andrés F. Izquierdo, Jochen Stadler, Cristiano Longarini, Richard Teague, Sean M. Andrews, Andrew J. Winter, Myriam Benisty, Stefano Facchini, Giovanni Rosotti, Brianna Zawadzki, Christophe Pinte, Daniele Fasano, Marcelo Barraza-Alfaro, Gianni Cataldi, Nicolás Cuello, Pietro Curone, Ian Czekala, Mario Flock, Misato Fukagawa, Charles H. Gardner, Himanshi Garg, Cassandra Hall, Jane Huang, John D. Ilee, Kazuhiro Kanagawa, Geoffroy Lesur, Giuseppe Lodato, Ryan A. Loomis, Francois Menard, Ryuta Orihara, Daniel J. Price, Gaylor Wafflard-Fernandez, David J. Wilner, Lisa Wölfer, Hsi-Wei Yen and Tomohiro C. Yoshida
{"title":"exoALMA。V.气体发射表面和温度结构","authors":"Maria Galloway-Sprietsma, Jaehan Bae, Andrés F. Izquierdo, Jochen Stadler, Cristiano Longarini, Richard Teague, Sean M. Andrews, Andrew J. Winter, Myriam Benisty, Stefano Facchini, Giovanni Rosotti, Brianna Zawadzki, Christophe Pinte, Daniele Fasano, Marcelo Barraza-Alfaro, Gianni Cataldi, Nicolás Cuello, Pietro Curone, Ian Czekala, Mario Flock, Misato Fukagawa, Charles H. Gardner, Himanshi Garg, Cassandra Hall, Jane Huang, John D. Ilee, Kazuhiro Kanagawa, Geoffroy Lesur, Giuseppe Lodato, Ryan A. Loomis, Francois Menard, Ryuta Orihara, Daniel J. Price, Gaylor Wafflard-Fernandez, David J. Wilner, Lisa Wölfer, Hsi-Wei Yen and Tomohiro C. Yoshida","doi":"10.3847/2041-8213/adc437","DOIUrl":null,"url":null,"abstract":"An analysis of the gaseous component in protoplanetary disks can inform us about their thermal and physical structure, chemical composition, and kinematic properties, all of which are crucial for understanding various processes within the disks. By exploiting the asymmetry of the line emission, or via line profile analysis, we can locate the emitting surfaces. Here, we present the emission surfaces of the exoALMA sources in 12CO J = 3–2, 13CO J = 3–2, and CS J = 7–6. We find that 12CO traces the upper disk atmosphere, with mean 〈z/r〉 values of ≈0.28, while 13CO and CS trace lower regions of the disk with mean 〈z/r〉 values of ≈0.16 and ≈0.18, respectively. We find that 12CO 〈z/r〉 and the disk mass are positively correlated with each other; this relationship offers a straightforward way to infer the disk mass. We derive 2D r – z temperature distributions of the disks. Additionally, we search for substructure in the surfaces and radial intensity profiles; we find evidence of localized substructure in the emission surfaces and peak intensity profiles of nearly every disk, with this substructure often being coincident between molecular tracers, intensity profiles, and kinematic perturbations. Four disks display evidence of potential photodesorption, implying that this effect may be common even in low far-ultraviolet star-forming regions. For most disks, we find that the physical and thermal structure is more complex than analytical models can account for, highlighting a need for more theoretical work and a better understanding of the role of projection effects on our observations.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"exoALMA. V. Gaseous Emission Surfaces and Temperature Structures\",\"authors\":\"Maria Galloway-Sprietsma, Jaehan Bae, Andrés F. Izquierdo, Jochen Stadler, Cristiano Longarini, Richard Teague, Sean M. Andrews, Andrew J. Winter, Myriam Benisty, Stefano Facchini, Giovanni Rosotti, Brianna Zawadzki, Christophe Pinte, Daniele Fasano, Marcelo Barraza-Alfaro, Gianni Cataldi, Nicolás Cuello, Pietro Curone, Ian Czekala, Mario Flock, Misato Fukagawa, Charles H. Gardner, Himanshi Garg, Cassandra Hall, Jane Huang, John D. Ilee, Kazuhiro Kanagawa, Geoffroy Lesur, Giuseppe Lodato, Ryan A. Loomis, Francois Menard, Ryuta Orihara, Daniel J. Price, Gaylor Wafflard-Fernandez, David J. Wilner, Lisa Wölfer, Hsi-Wei Yen and Tomohiro C. Yoshida\",\"doi\":\"10.3847/2041-8213/adc437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An analysis of the gaseous component in protoplanetary disks can inform us about their thermal and physical structure, chemical composition, and kinematic properties, all of which are crucial for understanding various processes within the disks. By exploiting the asymmetry of the line emission, or via line profile analysis, we can locate the emitting surfaces. Here, we present the emission surfaces of the exoALMA sources in 12CO J = 3–2, 13CO J = 3–2, and CS J = 7–6. We find that 12CO traces the upper disk atmosphere, with mean 〈z/r〉 values of ≈0.28, while 13CO and CS trace lower regions of the disk with mean 〈z/r〉 values of ≈0.16 and ≈0.18, respectively. We find that 12CO 〈z/r〉 and the disk mass are positively correlated with each other; this relationship offers a straightforward way to infer the disk mass. We derive 2D r – z temperature distributions of the disks. Additionally, we search for substructure in the surfaces and radial intensity profiles; we find evidence of localized substructure in the emission surfaces and peak intensity profiles of nearly every disk, with this substructure often being coincident between molecular tracers, intensity profiles, and kinematic perturbations. Four disks display evidence of potential photodesorption, implying that this effect may be common even in low far-ultraviolet star-forming regions. For most disks, we find that the physical and thermal structure is more complex than analytical models can account for, highlighting a need for more theoretical work and a better understanding of the role of projection effects on our observations.\",\"PeriodicalId\":501814,\"journal\":{\"name\":\"The Astrophysical Journal Letters\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astrophysical Journal Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/2041-8213/adc437\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/adc437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对原行星盘中气体成分的分析可以告诉我们它们的热学和物理结构、化学成分和运动特性,所有这些对于理解圆盘内的各种过程都是至关重要的。利用线发射的不对称性,或通过线轮廓分析,我们可以定位发射表面。本文给出了12CO J = 3-2、13CO J = 3-2和CS J = 7-6时的外alma源发射面。我们发现12CO跟踪磁盘上部大气,平均< z/r >值≈0.28,而13CO和CS跟踪磁盘下部大气,平均< z/r >值分别为≈0.16和≈0.18。我们发现12CO < z/r >与圆盘质量呈正相关;这种关系提供了一种直接推断磁盘质量的方法。我们推导了圆盘的二维r - z温度分布。此外,我们在表面和径向强度剖面中寻找子结构;我们在几乎每个圆盘的发射表面和峰值强度谱中发现了局部亚结构的证据,这种亚结构通常在分子示踪剂、强度谱和运动学扰动之间一致。四个圆盘显示出潜在光解吸的证据,这意味着即使在低远紫外恒星形成区域,这种效应也可能很常见。对于大多数磁盘,我们发现物理和热结构比分析模型所能解释的更复杂,这突出了需要更多的理论工作和更好地理解投影效应在我们观测中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
exoALMA. V. Gaseous Emission Surfaces and Temperature Structures
An analysis of the gaseous component in protoplanetary disks can inform us about their thermal and physical structure, chemical composition, and kinematic properties, all of which are crucial for understanding various processes within the disks. By exploiting the asymmetry of the line emission, or via line profile analysis, we can locate the emitting surfaces. Here, we present the emission surfaces of the exoALMA sources in 12CO J = 3–2, 13CO J = 3–2, and CS J = 7–6. We find that 12CO traces the upper disk atmosphere, with mean 〈z/r〉 values of ≈0.28, while 13CO and CS trace lower regions of the disk with mean 〈z/r〉 values of ≈0.16 and ≈0.18, respectively. We find that 12CO 〈z/r〉 and the disk mass are positively correlated with each other; this relationship offers a straightforward way to infer the disk mass. We derive 2D r – z temperature distributions of the disks. Additionally, we search for substructure in the surfaces and radial intensity profiles; we find evidence of localized substructure in the emission surfaces and peak intensity profiles of nearly every disk, with this substructure often being coincident between molecular tracers, intensity profiles, and kinematic perturbations. Four disks display evidence of potential photodesorption, implying that this effect may be common even in low far-ultraviolet star-forming regions. For most disks, we find that the physical and thermal structure is more complex than analytical models can account for, highlighting a need for more theoretical work and a better understanding of the role of projection effects on our observations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信