{"title":"洞察双中子星合并模拟:多代码比较","authors":"Maria C Babiuc Hamilton and William A Messman","doi":"10.1088/1361-6382/adccb1","DOIUrl":null,"url":null,"abstract":"Gravitational Wave (GW) signals from binary neutron star (BNS) mergers provide critical insights into the properties of matter under extreme conditions. Due to the scarcity of observational data, numerical relativity (NR) simulations are indispensable for exploring these phenomena, without replacing the need for observational confirmation. However, simulating BNS mergers is a formidable challenge, and ensuring the consistency, reliability or convergence, especially in the post-merger, remains a work in progress. In this paper we assess the performance of current BNS merger simulations by analyzing open-source GW waveforms from five leading NR codes – SACRA, BAM, THC, Whisky, and SpEC. We focus on the accuracy of these simulations and on the effect of the equation of state on waveform predictions. We first check if different codes give similar results for similar initial data, then apply two methods to calculate convergence and quantify discretization errors. Lastly, we perform a thorough investigation into the effect of tidal interactions on key frequencies in the GW spectrum. We introduce a novel quasi-universal relation for the transient post-merger time, enhancing our understanding of remnant dynamics in this region. This detailed analysis clarifies agreements and discrepancies between these leading NR codes, and highlights necessary improvements for the advanced accuracy requirements of future GW detectors.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"25 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insights into binary neutron star merger simulations: a multi-code comparison\",\"authors\":\"Maria C Babiuc Hamilton and William A Messman\",\"doi\":\"10.1088/1361-6382/adccb1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gravitational Wave (GW) signals from binary neutron star (BNS) mergers provide critical insights into the properties of matter under extreme conditions. Due to the scarcity of observational data, numerical relativity (NR) simulations are indispensable for exploring these phenomena, without replacing the need for observational confirmation. However, simulating BNS mergers is a formidable challenge, and ensuring the consistency, reliability or convergence, especially in the post-merger, remains a work in progress. In this paper we assess the performance of current BNS merger simulations by analyzing open-source GW waveforms from five leading NR codes – SACRA, BAM, THC, Whisky, and SpEC. We focus on the accuracy of these simulations and on the effect of the equation of state on waveform predictions. We first check if different codes give similar results for similar initial data, then apply two methods to calculate convergence and quantify discretization errors. Lastly, we perform a thorough investigation into the effect of tidal interactions on key frequencies in the GW spectrum. We introduce a novel quasi-universal relation for the transient post-merger time, enhancing our understanding of remnant dynamics in this region. This detailed analysis clarifies agreements and discrepancies between these leading NR codes, and highlights necessary improvements for the advanced accuracy requirements of future GW detectors.\",\"PeriodicalId\":10282,\"journal\":{\"name\":\"Classical and Quantum Gravity\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Classical and Quantum Gravity\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6382/adccb1\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Classical and Quantum Gravity","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6382/adccb1","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Insights into binary neutron star merger simulations: a multi-code comparison
Gravitational Wave (GW) signals from binary neutron star (BNS) mergers provide critical insights into the properties of matter under extreme conditions. Due to the scarcity of observational data, numerical relativity (NR) simulations are indispensable for exploring these phenomena, without replacing the need for observational confirmation. However, simulating BNS mergers is a formidable challenge, and ensuring the consistency, reliability or convergence, especially in the post-merger, remains a work in progress. In this paper we assess the performance of current BNS merger simulations by analyzing open-source GW waveforms from five leading NR codes – SACRA, BAM, THC, Whisky, and SpEC. We focus on the accuracy of these simulations and on the effect of the equation of state on waveform predictions. We first check if different codes give similar results for similar initial data, then apply two methods to calculate convergence and quantify discretization errors. Lastly, we perform a thorough investigation into the effect of tidal interactions on key frequencies in the GW spectrum. We introduce a novel quasi-universal relation for the transient post-merger time, enhancing our understanding of remnant dynamics in this region. This detailed analysis clarifies agreements and discrepancies between these leading NR codes, and highlights necessary improvements for the advanced accuracy requirements of future GW detectors.
期刊介绍:
Classical and Quantum Gravity is an established journal for physicists, mathematicians and cosmologists in the fields of gravitation and the theory of spacetime. The journal is now the acknowledged world leader in classical relativity and all areas of quantum gravity.