Tat Fan Cheng, Bin Wang, Fei Liu, Guosen Chen, Mengqian Lu
{"title":"MJO行为的变化增强了亚季节降水鞭打的可预测性","authors":"Tat Fan Cheng, Bin Wang, Fei Liu, Guosen Chen, Mengqian Lu","doi":"10.1038/s41467-025-58955-4","DOIUrl":null,"url":null,"abstract":"<p>Subseasonal precipitation whiplashes, marked by sudden shifts between dry and wet extremes, can disrupt ecosystems and human well-being. Predicting these events two to six weeks in advance is crucial for disaster management. Here, we show that the propagation diversity of the Madden-Julian Oscillation (MJO)—a key source of subseasonal predictability—will alter under anthropogenic warming. This is evidenced by a 40% increase in fast-propagating events by the late 21st century. Fast-propagating MJOs may rise in a period as early as 2028–2063, increasing the global risk of precipitation whiplashes through teleconnections. We propose a heuristic framework diagnosing that MJO’s acceleration is primarily driven by enhanced atmospheric stabilization and El Niño-like sea surface warming. The expected rise in fast-propagating MJOs could improve the predictability of subseasonal weather whiplashes, offering critical lead time for disaster preparedness. Understanding these impending shifts is essential for enhancing subseasonal prediction capabilities.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"47 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shifts in MJO behavior enhance predictability of subseasonal precipitation whiplashes\",\"authors\":\"Tat Fan Cheng, Bin Wang, Fei Liu, Guosen Chen, Mengqian Lu\",\"doi\":\"10.1038/s41467-025-58955-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Subseasonal precipitation whiplashes, marked by sudden shifts between dry and wet extremes, can disrupt ecosystems and human well-being. Predicting these events two to six weeks in advance is crucial for disaster management. Here, we show that the propagation diversity of the Madden-Julian Oscillation (MJO)—a key source of subseasonal predictability—will alter under anthropogenic warming. This is evidenced by a 40% increase in fast-propagating events by the late 21st century. Fast-propagating MJOs may rise in a period as early as 2028–2063, increasing the global risk of precipitation whiplashes through teleconnections. We propose a heuristic framework diagnosing that MJO’s acceleration is primarily driven by enhanced atmospheric stabilization and El Niño-like sea surface warming. The expected rise in fast-propagating MJOs could improve the predictability of subseasonal weather whiplashes, offering critical lead time for disaster preparedness. Understanding these impending shifts is essential for enhancing subseasonal prediction capabilities.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-58955-4\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58955-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Shifts in MJO behavior enhance predictability of subseasonal precipitation whiplashes
Subseasonal precipitation whiplashes, marked by sudden shifts between dry and wet extremes, can disrupt ecosystems and human well-being. Predicting these events two to six weeks in advance is crucial for disaster management. Here, we show that the propagation diversity of the Madden-Julian Oscillation (MJO)—a key source of subseasonal predictability—will alter under anthropogenic warming. This is evidenced by a 40% increase in fast-propagating events by the late 21st century. Fast-propagating MJOs may rise in a period as early as 2028–2063, increasing the global risk of precipitation whiplashes through teleconnections. We propose a heuristic framework diagnosing that MJO’s acceleration is primarily driven by enhanced atmospheric stabilization and El Niño-like sea surface warming. The expected rise in fast-propagating MJOs could improve the predictability of subseasonal weather whiplashes, offering critical lead time for disaster preparedness. Understanding these impending shifts is essential for enhancing subseasonal prediction capabilities.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.