利用HERGAST在超大ST切片中揭示精细空间结构和扩增基因表达信号

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yuqiao Gong, Xin Yuan, Qiong Jiao, Zhangsheng Yu
{"title":"利用HERGAST在超大ST切片中揭示精细空间结构和扩增基因表达信号","authors":"Yuqiao Gong, Xin Yuan, Qiong Jiao, Zhangsheng Yu","doi":"10.1038/s41467-025-59139-w","DOIUrl":null,"url":null,"abstract":"<p>We propose HERGAST, a system for spatial structure identification and signal amplification in ultra-large-scale and ultra-high-resolution spatial transcriptomics data. To handle ultra-large spatial transcriptomics (ST) data, we consider the divide and conquer strategy and devise a Divide-Iterate-Conquer framework especially for spatial transcriptomics data analysis, which can also be adopted by other computational methods for extending to ultra-large-scale ST data analysis. To tackle the potential over-smoothing problem arising from data splitting, we construct a heterogeneous graph network to incorporate both local and global spatial relationships. In simulations, HERGAST consistently outperforms other methods across all settings with more than a 10% increase in average adjusted rand index (ARI). In real-world datasets, HERGAST’s high-precision spatial clustering identifies <i>SPP1+</i> macrophages intermingled within colorectal tumors, while the enhanced gene expression signals reveal unique spatial expression patterns of key genes in breast cancer.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"72 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling fine-scale spatial structures and amplifying gene expression signals in ultra-large ST slices with HERGAST\",\"authors\":\"Yuqiao Gong, Xin Yuan, Qiong Jiao, Zhangsheng Yu\",\"doi\":\"10.1038/s41467-025-59139-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We propose HERGAST, a system for spatial structure identification and signal amplification in ultra-large-scale and ultra-high-resolution spatial transcriptomics data. To handle ultra-large spatial transcriptomics (ST) data, we consider the divide and conquer strategy and devise a Divide-Iterate-Conquer framework especially for spatial transcriptomics data analysis, which can also be adopted by other computational methods for extending to ultra-large-scale ST data analysis. To tackle the potential over-smoothing problem arising from data splitting, we construct a heterogeneous graph network to incorporate both local and global spatial relationships. In simulations, HERGAST consistently outperforms other methods across all settings with more than a 10% increase in average adjusted rand index (ARI). In real-world datasets, HERGAST’s high-precision spatial clustering identifies <i>SPP1+</i> macrophages intermingled within colorectal tumors, while the enhanced gene expression signals reveal unique spatial expression patterns of key genes in breast cancer.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"72 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-59139-w\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-59139-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了HERGAST,一个用于超大规模和超高分辨率空间转录组学数据的空间结构识别和信号放大系统。为了处理超大规模的空间转录组数据,我们考虑了分而治之的策略,并设计了一个专门用于空间转录组数据分析的分-迭代-征服框架,该框架也可以被其他计算方法所采用,以扩展到超大规模的空间转录组数据分析。为了解决由数据分裂引起的潜在的过度平滑问题,我们构建了一个异构图网络来结合局部和全局空间关系。在模拟中,HERGAST在所有设置中始终优于其他方法,平均调整后的rand指数(ARI)增加了10%以上。在真实数据集中,HERGAST的高精度空间聚类识别出结直肠癌肿瘤中混杂的SPP1+巨噬细胞,而增强的基因表达信号揭示了乳腺癌中关键基因的独特空间表达模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unveiling fine-scale spatial structures and amplifying gene expression signals in ultra-large ST slices with HERGAST

Unveiling fine-scale spatial structures and amplifying gene expression signals in ultra-large ST slices with HERGAST

We propose HERGAST, a system for spatial structure identification and signal amplification in ultra-large-scale and ultra-high-resolution spatial transcriptomics data. To handle ultra-large spatial transcriptomics (ST) data, we consider the divide and conquer strategy and devise a Divide-Iterate-Conquer framework especially for spatial transcriptomics data analysis, which can also be adopted by other computational methods for extending to ultra-large-scale ST data analysis. To tackle the potential over-smoothing problem arising from data splitting, we construct a heterogeneous graph network to incorporate both local and global spatial relationships. In simulations, HERGAST consistently outperforms other methods across all settings with more than a 10% increase in average adjusted rand index (ARI). In real-world datasets, HERGAST’s high-precision spatial clustering identifies SPP1+ macrophages intermingled within colorectal tumors, while the enhanced gene expression signals reveal unique spatial expression patterns of key genes in breast cancer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信