Zhonghao Ren, Xiangxiang Zeng, Yizhen Lao, Zhuhong You, Yifan Shang, Quan Zou, Chen Lin
{"title":"用双颗粒结构自适应和对变分表示预测罕见的药物-药物相互作用事件","authors":"Zhonghao Ren, Xiangxiang Zeng, Yizhen Lao, Zhuhong You, Yifan Shang, Quan Zou, Chen Lin","doi":"10.1038/s41467-025-59431-9","DOIUrl":null,"url":null,"abstract":"<p>Adverse drug-drug interaction events (DDIEs) pose serious risks to patient safety, yet rare but severe interactions remain challenging to identify due to limited clinical data. Existing computational methods rely heavily on abundant samples, failing to identify rare DDIEs. Here we introduce RareDDIE, a metric-based meta-learning model that employs a dual-granular structure-driven pair variational representation to enhance rare DDIE prediction. To further address the challenge of zero-shot DDIE identification, we develop the Biological Semantic Transferring (BST) module, integrating large-scale sentence embeddings to form the ZetaDDIE variant. Our model outperforms existing methods in few-sample and zero-sample settings. Furthermore, we verify that knowledge transfer from DDIE can improve drug synergy predictions, surpassing existing models. Case studies on antiplatelet activity reduction and non-small cell lung cancer drug synergy further illustrate the practical value of RareDDIE. By analyzing the meta-knowledge construction process, we provide interpretability into the model’s decision-making. This work establishes an effective computational framework for rare DDIE prediction, leveraging meta-learning and knowledge transfer to overcome key challenges in data-limited scenarios.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"65 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting rare drug-drug interaction events with dual-granular structure-adaptive and pair variational representation\",\"authors\":\"Zhonghao Ren, Xiangxiang Zeng, Yizhen Lao, Zhuhong You, Yifan Shang, Quan Zou, Chen Lin\",\"doi\":\"10.1038/s41467-025-59431-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Adverse drug-drug interaction events (DDIEs) pose serious risks to patient safety, yet rare but severe interactions remain challenging to identify due to limited clinical data. Existing computational methods rely heavily on abundant samples, failing to identify rare DDIEs. Here we introduce RareDDIE, a metric-based meta-learning model that employs a dual-granular structure-driven pair variational representation to enhance rare DDIE prediction. To further address the challenge of zero-shot DDIE identification, we develop the Biological Semantic Transferring (BST) module, integrating large-scale sentence embeddings to form the ZetaDDIE variant. Our model outperforms existing methods in few-sample and zero-sample settings. Furthermore, we verify that knowledge transfer from DDIE can improve drug synergy predictions, surpassing existing models. Case studies on antiplatelet activity reduction and non-small cell lung cancer drug synergy further illustrate the practical value of RareDDIE. By analyzing the meta-knowledge construction process, we provide interpretability into the model’s decision-making. This work establishes an effective computational framework for rare DDIE prediction, leveraging meta-learning and knowledge transfer to overcome key challenges in data-limited scenarios.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-59431-9\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-59431-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Predicting rare drug-drug interaction events with dual-granular structure-adaptive and pair variational representation
Adverse drug-drug interaction events (DDIEs) pose serious risks to patient safety, yet rare but severe interactions remain challenging to identify due to limited clinical data. Existing computational methods rely heavily on abundant samples, failing to identify rare DDIEs. Here we introduce RareDDIE, a metric-based meta-learning model that employs a dual-granular structure-driven pair variational representation to enhance rare DDIE prediction. To further address the challenge of zero-shot DDIE identification, we develop the Biological Semantic Transferring (BST) module, integrating large-scale sentence embeddings to form the ZetaDDIE variant. Our model outperforms existing methods in few-sample and zero-sample settings. Furthermore, we verify that knowledge transfer from DDIE can improve drug synergy predictions, surpassing existing models. Case studies on antiplatelet activity reduction and non-small cell lung cancer drug synergy further illustrate the practical value of RareDDIE. By analyzing the meta-knowledge construction process, we provide interpretability into the model’s decision-making. This work establishes an effective computational framework for rare DDIE prediction, leveraging meta-learning and knowledge transfer to overcome key challenges in data-limited scenarios.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.