Thomas Hilder, Andrew R. Casey, Daniel J. Price, Christophe Pinte, Andrés F. Izquierdo, Caitlyn Hardiman, Jaehan Bae, Marcelo Barraza-Alfaro, Myriam Benisty, Gianni Cataldi, Pietro Curone, Ian Czekala, Stefano Facchini, Daniele Fasano, Mario Flock, Misato Fukagawa, Maria Galloway-Sprietsma, Himanshi Garg, Cassandra Hall, Iain Hammond, Jane Huang, John D. Ilee, Kazuhiro Kanagawa, Geoffroy Lesur, Cristiano Longarini, Ryan Loomis, Ryuta Orihara, Giovanni Rosotti, Jochen Stadler, Richard Teague, Hsi-Wei Yen, Gaylor Wafflard, Andrew J. Winter, Lisa Wölfer, Tomohiro C. Yoshida and Brianna Zawadzki
{"title":"exoALMA。8。使用非参数线性模型的概率矩映射和数据产品","authors":"Thomas Hilder, Andrew R. Casey, Daniel J. Price, Christophe Pinte, Andrés F. Izquierdo, Caitlyn Hardiman, Jaehan Bae, Marcelo Barraza-Alfaro, Myriam Benisty, Gianni Cataldi, Pietro Curone, Ian Czekala, Stefano Facchini, Daniele Fasano, Mario Flock, Misato Fukagawa, Maria Galloway-Sprietsma, Himanshi Garg, Cassandra Hall, Iain Hammond, Jane Huang, John D. Ilee, Kazuhiro Kanagawa, Geoffroy Lesur, Cristiano Longarini, Ryan Loomis, Ryuta Orihara, Giovanni Rosotti, Jochen Stadler, Richard Teague, Hsi-Wei Yen, Gaylor Wafflard, Andrew J. Winter, Lisa Wölfer, Tomohiro C. Yoshida and Brianna Zawadzki","doi":"10.3847/2041-8213/adc435","DOIUrl":null,"url":null,"abstract":"Extracting robust inferences on physical quantities from disk kinematics measured from Doppler-shifted molecular line emission is challenging due to the data’s size and complexity. In this paper, we develop a flexible linear model of the intensity distribution in each frequency channel, accounting for spatial correlations from the point-spread function. The analytic form of the model’s posterior enables probabilistic data products through sampling. Our method debiases peak intensity, peak velocity, and line width maps, particularly in disk substructures that are only partially resolved. These are needed in order to measure disk mass, turbulence, and pressure gradients and detect embedded planets. We analyze HD 135344B, MWC 758, and CQ Tau, finding velocity substructures 50–200 m s−1 greater than with conventional methods. Additionally, we combine our approach with discminer in a case study of J1842. We find that uncertainties in stellar mass and inclination increase by an order of magnitude due to the more realistic noise model. More broadly, our method can be applied to any problem requiring a probabilistic model of an intensity distribution conditioned on a point-spread function.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"exoALMA. VIII. Probabilistic Moment Maps and Data Products Using Nonparametric Linear Models\",\"authors\":\"Thomas Hilder, Andrew R. Casey, Daniel J. Price, Christophe Pinte, Andrés F. Izquierdo, Caitlyn Hardiman, Jaehan Bae, Marcelo Barraza-Alfaro, Myriam Benisty, Gianni Cataldi, Pietro Curone, Ian Czekala, Stefano Facchini, Daniele Fasano, Mario Flock, Misato Fukagawa, Maria Galloway-Sprietsma, Himanshi Garg, Cassandra Hall, Iain Hammond, Jane Huang, John D. Ilee, Kazuhiro Kanagawa, Geoffroy Lesur, Cristiano Longarini, Ryan Loomis, Ryuta Orihara, Giovanni Rosotti, Jochen Stadler, Richard Teague, Hsi-Wei Yen, Gaylor Wafflard, Andrew J. Winter, Lisa Wölfer, Tomohiro C. Yoshida and Brianna Zawadzki\",\"doi\":\"10.3847/2041-8213/adc435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extracting robust inferences on physical quantities from disk kinematics measured from Doppler-shifted molecular line emission is challenging due to the data’s size and complexity. In this paper, we develop a flexible linear model of the intensity distribution in each frequency channel, accounting for spatial correlations from the point-spread function. The analytic form of the model’s posterior enables probabilistic data products through sampling. Our method debiases peak intensity, peak velocity, and line width maps, particularly in disk substructures that are only partially resolved. These are needed in order to measure disk mass, turbulence, and pressure gradients and detect embedded planets. We analyze HD 135344B, MWC 758, and CQ Tau, finding velocity substructures 50–200 m s−1 greater than with conventional methods. Additionally, we combine our approach with discminer in a case study of J1842. We find that uncertainties in stellar mass and inclination increase by an order of magnitude due to the more realistic noise model. More broadly, our method can be applied to any problem requiring a probabilistic model of an intensity distribution conditioned on a point-spread function.\",\"PeriodicalId\":501814,\"journal\":{\"name\":\"The Astrophysical Journal Letters\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astrophysical Journal Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/2041-8213/adc435\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/adc435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
由于数据的大小和复杂性,从多普勒移分子线发射测量的磁盘运动学中提取物理量的鲁棒推断是具有挑战性的。在本文中,我们开发了一个灵活的线性模型的强度分布在每个频率通道,从点扩散函数的空间相关性考虑。模型后验的解析形式使得通过抽样得到概率数据产品成为可能。我们的方法消除了峰强度、峰速度和线宽图的偏差,特别是在只有部分解析的磁盘子结构中。这些都是测量圆盘质量、湍流和压力梯度以及探测嵌入行星所必需的。我们分析了HD 135344B、MWC 758和CQ Tau,发现速度子结构比传统方法大50-200 m s - 1。此外,我们将我们的方法与鉴别器结合在J1842的案例研究中。我们发现,由于更真实的噪声模型,恒星质量和倾角的不确定性增加了一个数量级。更广泛地说,我们的方法可以应用于任何需要以点扩散函数为条件的强度分布的概率模型的问题。
exoALMA. VIII. Probabilistic Moment Maps and Data Products Using Nonparametric Linear Models
Extracting robust inferences on physical quantities from disk kinematics measured from Doppler-shifted molecular line emission is challenging due to the data’s size and complexity. In this paper, we develop a flexible linear model of the intensity distribution in each frequency channel, accounting for spatial correlations from the point-spread function. The analytic form of the model’s posterior enables probabilistic data products through sampling. Our method debiases peak intensity, peak velocity, and line width maps, particularly in disk substructures that are only partially resolved. These are needed in order to measure disk mass, turbulence, and pressure gradients and detect embedded planets. We analyze HD 135344B, MWC 758, and CQ Tau, finding velocity substructures 50–200 m s−1 greater than with conventional methods. Additionally, we combine our approach with discminer in a case study of J1842. We find that uncertainties in stellar mass and inclination increase by an order of magnitude due to the more realistic noise model. More broadly, our method can be applied to any problem requiring a probabilistic model of an intensity distribution conditioned on a point-spread function.