通过对内射对象的限制,dg-升降机具有唯一性

IF 1 2区 数学 Q1 MATHEMATICS
Francesco Genovese
{"title":"通过对内射对象的限制,dg-升降机具有唯一性","authors":"Francesco Genovese","doi":"10.1112/jlms.70166","DOIUrl":null,"url":null,"abstract":"<p>We prove a uniqueness result of dg-lifts for the derived pushforward and pullback functors of a flat morphism between separated Noetherian schemes, between the unbounded or bounded below derived categories of quasi-coherent sheaves. The technique is purely algebraic-categorical and involves reconstructing dg-lifts uniquely from their restrictions to the subcategories of injective objects.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 5","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uniqueness of dg-lifts via restriction to injective objects\",\"authors\":\"Francesco Genovese\",\"doi\":\"10.1112/jlms.70166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove a uniqueness result of dg-lifts for the derived pushforward and pullback functors of a flat morphism between separated Noetherian schemes, between the unbounded or bounded below derived categories of quasi-coherent sheaves. The technique is purely algebraic-categorical and involves reconstructing dg-lifts uniquely from their restrictions to the subcategories of injective objects.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"111 5\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70166\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70166","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了在分离的noether格式之间,在拟相干束的无界或有界的派生范畴之间的平面态射的导出的推退函子的g-提升的唯一性结果。该技术是纯代数范畴的,涉及到从它们的限制到单射对象的子范畴唯一地重建dg-lift。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uniqueness of dg-lifts via restriction to injective objects

We prove a uniqueness result of dg-lifts for the derived pushforward and pullback functors of a flat morphism between separated Noetherian schemes, between the unbounded or bounded below derived categories of quasi-coherent sheaves. The technique is purely algebraic-categorical and involves reconstructing dg-lifts uniquely from their restrictions to the subcategories of injective objects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信