Chang Sun, Shuanghao Wang, Huihui Li, David Da Yong Chen
{"title":"不同方法表征牛磺胆酸与潜在口服制剂胰岛素的结合","authors":"Chang Sun, Shuanghao Wang, Huihui Li, David Da Yong Chen","doi":"10.1002/elps.8139","DOIUrl":null,"url":null,"abstract":"<p>In diabetes management, oral formulation of insulin (INS) has the potential to improve safety, convenience, and patient-centered care compared to subcutaneous injections. However, its bioavailability remains limited, necessitating improved delivery strategies. Recent clinical trials indicate that taurocholic acid (TCA) can enhance the bioavailability of oral INS as an absorption enhancer. In this work, electrospray ionization mass spectrometry (ESI-MS) analysis revealed the formation of 1:1–1:4 INS–TCA complexes. MS/MS was used to explore the fragmentation pathway of complex ions and confirm binding stability in the gas phase. Circular dichroism spectra showed no clear conformational change in INS upon TCA binding, even though TCA enhanced INS's structural stability. Using Taylor dispersion analysis (TDA), we determined the diffusion coefficient and hydrodynamic radius of INS and its complexes. TCA binding was observed to increase INS size in both the 1:1 and 1:2 INS–TCA complexes. The binding constant of INS and TCA (1.3 × 10<sup>3</sup> L/mol) with approximately five binding sites was obtained via pressure-assisted capillary electrophoresis frontal analysis. Molecular docking simulations indicated that TCA binds to external binding sites on the INS B chain (near Ser-B9, Glu-B13, and Phe-B24 residues), consistent with ESI-MS and TDA results. These findings suggest that TCA binding may enhance INS absorption and increase the bioavailability of oral INS therapy.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":"46 7-8","pages":"468-477"},"PeriodicalIF":3.0000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elps.8139","citationCount":"0","resultStr":"{\"title\":\"Characterization of Taurocholic Acid Binding With Insulin for Potential Oral Formulation Using Different Methods\",\"authors\":\"Chang Sun, Shuanghao Wang, Huihui Li, David Da Yong Chen\",\"doi\":\"10.1002/elps.8139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In diabetes management, oral formulation of insulin (INS) has the potential to improve safety, convenience, and patient-centered care compared to subcutaneous injections. However, its bioavailability remains limited, necessitating improved delivery strategies. Recent clinical trials indicate that taurocholic acid (TCA) can enhance the bioavailability of oral INS as an absorption enhancer. In this work, electrospray ionization mass spectrometry (ESI-MS) analysis revealed the formation of 1:1–1:4 INS–TCA complexes. MS/MS was used to explore the fragmentation pathway of complex ions and confirm binding stability in the gas phase. Circular dichroism spectra showed no clear conformational change in INS upon TCA binding, even though TCA enhanced INS's structural stability. Using Taylor dispersion analysis (TDA), we determined the diffusion coefficient and hydrodynamic radius of INS and its complexes. TCA binding was observed to increase INS size in both the 1:1 and 1:2 INS–TCA complexes. The binding constant of INS and TCA (1.3 × 10<sup>3</sup> L/mol) with approximately five binding sites was obtained via pressure-assisted capillary electrophoresis frontal analysis. Molecular docking simulations indicated that TCA binds to external binding sites on the INS B chain (near Ser-B9, Glu-B13, and Phe-B24 residues), consistent with ESI-MS and TDA results. These findings suggest that TCA binding may enhance INS absorption and increase the bioavailability of oral INS therapy.</p>\",\"PeriodicalId\":11596,\"journal\":{\"name\":\"ELECTROPHORESIS\",\"volume\":\"46 7-8\",\"pages\":\"468-477\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elps.8139\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ELECTROPHORESIS\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/elps.8139\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ELECTROPHORESIS","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elps.8139","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Characterization of Taurocholic Acid Binding With Insulin for Potential Oral Formulation Using Different Methods
In diabetes management, oral formulation of insulin (INS) has the potential to improve safety, convenience, and patient-centered care compared to subcutaneous injections. However, its bioavailability remains limited, necessitating improved delivery strategies. Recent clinical trials indicate that taurocholic acid (TCA) can enhance the bioavailability of oral INS as an absorption enhancer. In this work, electrospray ionization mass spectrometry (ESI-MS) analysis revealed the formation of 1:1–1:4 INS–TCA complexes. MS/MS was used to explore the fragmentation pathway of complex ions and confirm binding stability in the gas phase. Circular dichroism spectra showed no clear conformational change in INS upon TCA binding, even though TCA enhanced INS's structural stability. Using Taylor dispersion analysis (TDA), we determined the diffusion coefficient and hydrodynamic radius of INS and its complexes. TCA binding was observed to increase INS size in both the 1:1 and 1:2 INS–TCA complexes. The binding constant of INS and TCA (1.3 × 103 L/mol) with approximately five binding sites was obtained via pressure-assisted capillary electrophoresis frontal analysis. Molecular docking simulations indicated that TCA binds to external binding sites on the INS B chain (near Ser-B9, Glu-B13, and Phe-B24 residues), consistent with ESI-MS and TDA results. These findings suggest that TCA binding may enhance INS absorption and increase the bioavailability of oral INS therapy.
期刊介绍:
ELECTROPHORESIS is an international journal that publishes original manuscripts on all aspects of electrophoresis, and liquid phase separations (e.g., HPLC, micro- and nano-LC, UHPLC, micro- and nano-fluidics, liquid-phase micro-extractions, etc.).
Topics include new or improved analytical and preparative methods, sample preparation, development of theory, and innovative applications of electrophoretic and liquid phase separations methods in the study of nucleic acids, proteins, carbohydrates natural products, pharmaceuticals, food analysis, environmental species and other compounds of importance to the life sciences.
Papers in the areas of microfluidics and proteomics, which are not limited to electrophoresis-based methods, will also be accepted for publication. Contributions focused on hyphenated and omics techniques are also of interest. Proteomics is within the scope, if related to its fundamentals and new technical approaches. Proteomics applications are only considered in particular cases.
Papers describing the application of standard electrophoretic methods will not be considered.
Papers on nanoanalysis intended for publication in ELECTROPHORESIS should focus on one or more of the following topics:
• Nanoscale electrokinetics and phenomena related to electric double layer and/or confinement in nano-sized geometry
• Single cell and subcellular analysis
• Nanosensors and ultrasensitive detection aspects (e.g., involving quantum dots, "nanoelectrodes" or nanospray MS)
• Nanoscale/nanopore DNA sequencing (next generation sequencing)
• Micro- and nanoscale sample preparation
• Nanoparticles and cells analyses by dielectrophoresis
• Separation-based analysis using nanoparticles, nanotubes and nanowires.