Pablo Rubial-Yáñez, Luis García-Rodríguez, María Isabel Lamas-Galdo, Laura Castro-Santos, Almudena Filgueira-Vizoso
{"title":"海上光伏板传热过程的CFD模型","authors":"Pablo Rubial-Yáñez, Luis García-Rodríguez, María Isabel Lamas-Galdo, Laura Castro-Santos, Almudena Filgueira-Vizoso","doi":"10.1049/rpg2.13154","DOIUrl":null,"url":null,"abstract":"<p>Solar energy has become increasingly important in recent years. The installed capacity has increased over the years, and today solar energy represents a significant part of the renewable energy contribution. One of the handicaps of photovoltaic panels is the cooling process. The panels are susceptible to overheating, which leads to a reduction in efficiency. One of the ways to mitigate this problem is to install the photovoltaic panels offshore, where cooling is more efficient, thus increasing power generation. Due to the lack of in-depth analysis of numerical models for studying heat transfer in offshore photovoltaic panels in the literature, this work proposes a computational fluid dynamics model to analyse the thermal performance of an offshore photovoltaic panel. The numerical model was used to characterize the heat transfer processes. The model was validated with experimental data from an onshore panel setup, where key parameters such as solar radiation, inlet air temperature, and solar cell temperature were measured. A comparison between onshore and offshore installations was made. The model showed that the average solar cell temperature in offshore conditions is 39.11°C, compared to 45.5°C for onshore panels. Over a day analysed, the average efficiency improved from, 10.7% to 11.2%. The research also highlighted the critical role of water temperature in affecting the thermal performance of PV panels. The potential impact on the marine ecosystem due to increases in water temperature was found to be negligible, supporting the sustainability of offshore PV systems. These results demonstrate the advantages of offshore photovoltaic systems over traditional onshore ones, contributing to the advancement of sustainable energy solutions.</p>","PeriodicalId":55000,"journal":{"name":"IET Renewable Power Generation","volume":"19 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.13154","citationCount":"0","resultStr":"{\"title\":\"CFD model of the heat transfer processes in an offshore photovoltaic panel\",\"authors\":\"Pablo Rubial-Yáñez, Luis García-Rodríguez, María Isabel Lamas-Galdo, Laura Castro-Santos, Almudena Filgueira-Vizoso\",\"doi\":\"10.1049/rpg2.13154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Solar energy has become increasingly important in recent years. The installed capacity has increased over the years, and today solar energy represents a significant part of the renewable energy contribution. One of the handicaps of photovoltaic panels is the cooling process. The panels are susceptible to overheating, which leads to a reduction in efficiency. One of the ways to mitigate this problem is to install the photovoltaic panels offshore, where cooling is more efficient, thus increasing power generation. Due to the lack of in-depth analysis of numerical models for studying heat transfer in offshore photovoltaic panels in the literature, this work proposes a computational fluid dynamics model to analyse the thermal performance of an offshore photovoltaic panel. The numerical model was used to characterize the heat transfer processes. The model was validated with experimental data from an onshore panel setup, where key parameters such as solar radiation, inlet air temperature, and solar cell temperature were measured. A comparison between onshore and offshore installations was made. The model showed that the average solar cell temperature in offshore conditions is 39.11°C, compared to 45.5°C for onshore panels. Over a day analysed, the average efficiency improved from, 10.7% to 11.2%. The research also highlighted the critical role of water temperature in affecting the thermal performance of PV panels. The potential impact on the marine ecosystem due to increases in water temperature was found to be negligible, supporting the sustainability of offshore PV systems. These results demonstrate the advantages of offshore photovoltaic systems over traditional onshore ones, contributing to the advancement of sustainable energy solutions.</p>\",\"PeriodicalId\":55000,\"journal\":{\"name\":\"IET Renewable Power Generation\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.13154\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Renewable Power Generation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/rpg2.13154\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Renewable Power Generation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rpg2.13154","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
CFD model of the heat transfer processes in an offshore photovoltaic panel
Solar energy has become increasingly important in recent years. The installed capacity has increased over the years, and today solar energy represents a significant part of the renewable energy contribution. One of the handicaps of photovoltaic panels is the cooling process. The panels are susceptible to overheating, which leads to a reduction in efficiency. One of the ways to mitigate this problem is to install the photovoltaic panels offshore, where cooling is more efficient, thus increasing power generation. Due to the lack of in-depth analysis of numerical models for studying heat transfer in offshore photovoltaic panels in the literature, this work proposes a computational fluid dynamics model to analyse the thermal performance of an offshore photovoltaic panel. The numerical model was used to characterize the heat transfer processes. The model was validated with experimental data from an onshore panel setup, where key parameters such as solar radiation, inlet air temperature, and solar cell temperature were measured. A comparison between onshore and offshore installations was made. The model showed that the average solar cell temperature in offshore conditions is 39.11°C, compared to 45.5°C for onshore panels. Over a day analysed, the average efficiency improved from, 10.7% to 11.2%. The research also highlighted the critical role of water temperature in affecting the thermal performance of PV panels. The potential impact on the marine ecosystem due to increases in water temperature was found to be negligible, supporting the sustainability of offshore PV systems. These results demonstrate the advantages of offshore photovoltaic systems over traditional onshore ones, contributing to the advancement of sustainable energy solutions.
期刊介绍:
IET Renewable Power Generation (RPG) brings together the topics of renewable energy technology, power generation and systems integration, with techno-economic issues. All renewable energy generation technologies are within the scope of the journal.
Specific technology areas covered by the journal include:
Wind power technology and systems
Photovoltaics
Solar thermal power generation
Geothermal energy
Fuel cells
Wave power
Marine current energy
Biomass conversion and power generation
What differentiates RPG from technology specific journals is a concern with power generation and how the characteristics of the different renewable sources affect electrical power conversion, including power electronic design, integration in to power systems, and techno-economic issues. Other technologies that have a direct role in sustainable power generation such as fuel cells and energy storage are also covered, as are system control approaches such as demand side management, which facilitate the integration of renewable sources into power systems, both large and small.
The journal provides a forum for the presentation of new research, development and applications of renewable power generation. Demonstrations and experimentally based research are particularly valued, and modelling studies should as far as possible be validated so as to give confidence that the models are representative of real-world behavior. Research that explores issues where the characteristics of the renewable energy source and their control impact on the power conversion is welcome. Papers covering the wider areas of power system control and operation, including scheduling and protection that are central to the challenge of renewable power integration are particularly encouraged.
The journal is technology focused covering design, demonstration, modelling and analysis, but papers covering techno-economic issues are also of interest. Papers presenting new modelling and theory are welcome but this must be relevant to real power systems and power generation. Most papers are expected to include significant novelty of approach or application that has general applicability, and where appropriate include experimental results. Critical reviews of relevant topics are also invited and these would be expected to be comprehensive and fully referenced.
Current Special Issue. Call for papers:
Power Quality and Protection in Renewable Energy Systems and Microgrids - https://digital-library.theiet.org/files/IET_RPG_CFP_PQPRESM.pdf
Energy and Rail/Road Transportation Integrated Development - https://digital-library.theiet.org/files/IET_RPG_CFP_ERTID.pdf