{"title":"基于多源遥感技术的2016年熊本Mw 7.1地震形变场特征分析","authors":"Qingyun Zhang, Jingfa Zhang, Yongsheng Li, Bingquan Li, Quancai Xie, Sanming Luo","doi":"10.1007/s00024-025-03694-2","DOIUrl":null,"url":null,"abstract":"<div><p>The Kumamoto earthquake is analyzed, mainly on the basis of InSAR data combined with strong earthquake and <span>GNSS</span> data, using a variety of joint InSAR methods and multisource data solution methods and by comprehensively considering the normalization and weighting of multisource data. The three-dimensional (3D) deformation field is determined. The results show that the joint solution with multisource data can improve the accuracy of the 3D solution deformation results to a certain extent. According to the 3D solution results, the maximum east–west deformation caused by the 2016 Kumamoto earthquake was approximately 2 m; the manifestations in the north–south direction were mainly characterized by expansion and stretching; the northwestern side subsided vertically, with a maximum subsidence of 2 m; and the southeastern side was uplifted. The horizontal deformation characteristics reveal that the earthquake was dominated by right-lateral strike-slip; the strike was NE–SW oriented, and the Futagawa fault has several normal fault properties. By analyzing the co-seismic 3D deformation field, seismogenic faults can be better understood, which provides a foundation for studying seismic mechanisms.</p></div>","PeriodicalId":21078,"journal":{"name":"pure and applied geophysics","volume":"182 4","pages":"1409 - 1425"},"PeriodicalIF":1.9000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Deformation Field Characteristics from the 2016 Kumamoto Mw 7.1 Earthquake Based on Multisource Remote Sensing Technology\",\"authors\":\"Qingyun Zhang, Jingfa Zhang, Yongsheng Li, Bingquan Li, Quancai Xie, Sanming Luo\",\"doi\":\"10.1007/s00024-025-03694-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Kumamoto earthquake is analyzed, mainly on the basis of InSAR data combined with strong earthquake and <span>GNSS</span> data, using a variety of joint InSAR methods and multisource data solution methods and by comprehensively considering the normalization and weighting of multisource data. The three-dimensional (3D) deformation field is determined. The results show that the joint solution with multisource data can improve the accuracy of the 3D solution deformation results to a certain extent. According to the 3D solution results, the maximum east–west deformation caused by the 2016 Kumamoto earthquake was approximately 2 m; the manifestations in the north–south direction were mainly characterized by expansion and stretching; the northwestern side subsided vertically, with a maximum subsidence of 2 m; and the southeastern side was uplifted. The horizontal deformation characteristics reveal that the earthquake was dominated by right-lateral strike-slip; the strike was NE–SW oriented, and the Futagawa fault has several normal fault properties. By analyzing the co-seismic 3D deformation field, seismogenic faults can be better understood, which provides a foundation for studying seismic mechanisms.</p></div>\",\"PeriodicalId\":21078,\"journal\":{\"name\":\"pure and applied geophysics\",\"volume\":\"182 4\",\"pages\":\"1409 - 1425\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"pure and applied geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00024-025-03694-2\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"pure and applied geophysics","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00024-025-03694-2","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Analysis of Deformation Field Characteristics from the 2016 Kumamoto Mw 7.1 Earthquake Based on Multisource Remote Sensing Technology
The Kumamoto earthquake is analyzed, mainly on the basis of InSAR data combined with strong earthquake and GNSS data, using a variety of joint InSAR methods and multisource data solution methods and by comprehensively considering the normalization and weighting of multisource data. The three-dimensional (3D) deformation field is determined. The results show that the joint solution with multisource data can improve the accuracy of the 3D solution deformation results to a certain extent. According to the 3D solution results, the maximum east–west deformation caused by the 2016 Kumamoto earthquake was approximately 2 m; the manifestations in the north–south direction were mainly characterized by expansion and stretching; the northwestern side subsided vertically, with a maximum subsidence of 2 m; and the southeastern side was uplifted. The horizontal deformation characteristics reveal that the earthquake was dominated by right-lateral strike-slip; the strike was NE–SW oriented, and the Futagawa fault has several normal fault properties. By analyzing the co-seismic 3D deformation field, seismogenic faults can be better understood, which provides a foundation for studying seismic mechanisms.
期刊介绍:
pure and applied geophysics (pageoph), a continuation of the journal "Geofisica pura e applicata", publishes original scientific contributions in the fields of solid Earth, atmospheric and oceanic sciences. Regular and special issues feature thought-provoking reports on active areas of current research and state-of-the-art surveys.
Long running journal, founded in 1939 as Geofisica pura e applicata
Publishes peer-reviewed original scientific contributions and state-of-the-art surveys in solid earth and atmospheric sciences
Features thought-provoking reports on active areas of current research and is a major source for publications on tsunami research
Coverage extends to research topics in oceanic sciences
See Instructions for Authors on the right hand side.