{"title":"臭虫Plautia stali Scott, 1874早期发育中肠道共生器官的特殊结构特征(半翅目:蝽科)","authors":"Toshiyuki Harumoto, Minoru Moriyama, Takema Fukatsu","doi":"10.1007/s00114-025-01986-0","DOIUrl":null,"url":null,"abstract":"<div><p>Many insects have symbiotic microorganisms within their body. Such microbial symbiosis underpins the survival and prosperity of insects through multiple means. The brown-winged green stinkbug <i>Plautia stali</i>, which is notorious as an agricultural pest and utilized as an experimental model insect, harbors a bacterial symbiont <i>Pantoea</i> in a posterior part of the midgut, which is essential for the host’s development and reproduction. From both basic and applied research perspectives, it is important to investigate the mechanistic bases underpinning the insect-microbe symbiotic association. Here, we performed detailed electron and optical microscopic analyses of the early nymphal midguts to reveal the type of cellular structure and property that orchestrates the symbiont colonization in the restricted part of the midgut. We identified two peculiar structural features of the nymphal midgut that develop in a region-restricted manner: long and heterogenous cellular protrusions (microvilli) solely emerged in the midgut symbiotic region and highly developed circular muscle cell layers specifically observed in the junction of non-symbiotic and symbiotic regions of the midgut. We discuss the potential roles of these unique structures in the midgut bacterial symbiosis.</p></div>","PeriodicalId":794,"journal":{"name":"The Science of Nature","volume":"112 3","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Peculiar structural features of midgut symbiotic organ in the early development of the stinkbug Plautia stali Scott, 1874 (Hemiptera: Pentatomidae)\",\"authors\":\"Toshiyuki Harumoto, Minoru Moriyama, Takema Fukatsu\",\"doi\":\"10.1007/s00114-025-01986-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Many insects have symbiotic microorganisms within their body. Such microbial symbiosis underpins the survival and prosperity of insects through multiple means. The brown-winged green stinkbug <i>Plautia stali</i>, which is notorious as an agricultural pest and utilized as an experimental model insect, harbors a bacterial symbiont <i>Pantoea</i> in a posterior part of the midgut, which is essential for the host’s development and reproduction. From both basic and applied research perspectives, it is important to investigate the mechanistic bases underpinning the insect-microbe symbiotic association. Here, we performed detailed electron and optical microscopic analyses of the early nymphal midguts to reveal the type of cellular structure and property that orchestrates the symbiont colonization in the restricted part of the midgut. We identified two peculiar structural features of the nymphal midgut that develop in a region-restricted manner: long and heterogenous cellular protrusions (microvilli) solely emerged in the midgut symbiotic region and highly developed circular muscle cell layers specifically observed in the junction of non-symbiotic and symbiotic regions of the midgut. We discuss the potential roles of these unique structures in the midgut bacterial symbiosis.</p></div>\",\"PeriodicalId\":794,\"journal\":{\"name\":\"The Science of Nature\",\"volume\":\"112 3\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Science of Nature\",\"FirstCategoryId\":\"6\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00114-025-01986-0\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Science of Nature","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s00114-025-01986-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Peculiar structural features of midgut symbiotic organ in the early development of the stinkbug Plautia stali Scott, 1874 (Hemiptera: Pentatomidae)
Many insects have symbiotic microorganisms within their body. Such microbial symbiosis underpins the survival and prosperity of insects through multiple means. The brown-winged green stinkbug Plautia stali, which is notorious as an agricultural pest and utilized as an experimental model insect, harbors a bacterial symbiont Pantoea in a posterior part of the midgut, which is essential for the host’s development and reproduction. From both basic and applied research perspectives, it is important to investigate the mechanistic bases underpinning the insect-microbe symbiotic association. Here, we performed detailed electron and optical microscopic analyses of the early nymphal midguts to reveal the type of cellular structure and property that orchestrates the symbiont colonization in the restricted part of the midgut. We identified two peculiar structural features of the nymphal midgut that develop in a region-restricted manner: long and heterogenous cellular protrusions (microvilli) solely emerged in the midgut symbiotic region and highly developed circular muscle cell layers specifically observed in the junction of non-symbiotic and symbiotic regions of the midgut. We discuss the potential roles of these unique structures in the midgut bacterial symbiosis.
期刊介绍:
The Science of Nature - Naturwissenschaften - is Springer''s flagship multidisciplinary science journal. The journal is dedicated to the fast publication and global dissemination of high-quality research and invites papers, which are of interest to the broader community in the biological sciences. Contributions from the chemical, geological, and physical sciences are welcome if contributing to questions of general biological significance. Particularly welcomed are contributions that bridge between traditionally isolated areas and attempt to increase the conceptual understanding of systems and processes that demand an interdisciplinary approach.