脉冲直流磁控溅射制备ZnO/TiO2双层薄膜的光学和结构特性

IF 2.8 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Mohammed H. Fawey, A. A. Abd El-Moula, F. M. El-Hossary, Tawheed Hashem, M. Abo El-Kassem
{"title":"脉冲直流磁控溅射制备ZnO/TiO2双层薄膜的光学和结构特性","authors":"Mohammed H. Fawey,&nbsp;A. A. Abd El-Moula,&nbsp;F. M. El-Hossary,&nbsp;Tawheed Hashem,&nbsp;M. Abo El-Kassem","doi":"10.1007/s10854-025-14703-4","DOIUrl":null,"url":null,"abstract":"<div><p>Pulsed DC magnetron sputtering was employed to deposit ZnO/TiO<sub>2</sub> bilayer thin films of varying thicknesses on glass substrates, with both layers being 80 nm thick. The structural and optical properties of the thin films were investigated using X-ray diffraction (XRD), atomic force microscopy (AFM), photoluminescence (PL), and optical transmittance measurements. The AFM analysis revealed a fine dispersion of spherical particles on the bilayer, with thicker ZnO layers leading to an increase in particle size. The single-layer film exhibited lower surface roughness (4.56 nm and 4.71 nm for ZnO and TiO<sub>2</sub>, respectively) compared to the ZnO/TiO<sub>2</sub> bilayer (approximately 8 nm). The adhesion force decreased with increasing TiO<sub>2</sub> thickness, from 50 mN (80 nm ZnO) to 10 mN (80 nm TiO<sub>2</sub>). XRD analysis indicated that the ZnO/TiO<sub>2</sub> bilayer are amorphous, while the single ZnO layer is semi-crystalline with a hexagonal wurtzite crystal structure with an average crystallite size of 52 nm for the ZnO (100) plane. PL spectroscopy showed a strong violet emission at 420 nm, along with weaker emissions at 461 and 467 nm for all samples. The intensity of UV emission increased with TiO<sub>2</sub> layer thickness, peaking at 20 nm ZnO/60 nm TiO<sub>2</sub>. The band gaps (<i>E</i><sub><i>g</i></sub>) for the single-layer ZnO and TiO<sub>2</sub> were found to be 3.21 eV and 3.32 eV, respectively. However, the <i>E</i><sub><i>g</i></sub> of the bilayer films increased from 3.27 eV to 3.36 eV as the TiO<sub>2</sub> layer thickness increased.</p></div>","PeriodicalId":646,"journal":{"name":"Journal of Materials Science: Materials in Electronics","volume":"36 12","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10854-025-14703-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Optical and structural properties of ZnO/TiO2 bilayer thin films deposited by pulsed DC magnetron sputtering\",\"authors\":\"Mohammed H. Fawey,&nbsp;A. A. Abd El-Moula,&nbsp;F. M. El-Hossary,&nbsp;Tawheed Hashem,&nbsp;M. Abo El-Kassem\",\"doi\":\"10.1007/s10854-025-14703-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Pulsed DC magnetron sputtering was employed to deposit ZnO/TiO<sub>2</sub> bilayer thin films of varying thicknesses on glass substrates, with both layers being 80 nm thick. The structural and optical properties of the thin films were investigated using X-ray diffraction (XRD), atomic force microscopy (AFM), photoluminescence (PL), and optical transmittance measurements. The AFM analysis revealed a fine dispersion of spherical particles on the bilayer, with thicker ZnO layers leading to an increase in particle size. The single-layer film exhibited lower surface roughness (4.56 nm and 4.71 nm for ZnO and TiO<sub>2</sub>, respectively) compared to the ZnO/TiO<sub>2</sub> bilayer (approximately 8 nm). The adhesion force decreased with increasing TiO<sub>2</sub> thickness, from 50 mN (80 nm ZnO) to 10 mN (80 nm TiO<sub>2</sub>). XRD analysis indicated that the ZnO/TiO<sub>2</sub> bilayer are amorphous, while the single ZnO layer is semi-crystalline with a hexagonal wurtzite crystal structure with an average crystallite size of 52 nm for the ZnO (100) plane. PL spectroscopy showed a strong violet emission at 420 nm, along with weaker emissions at 461 and 467 nm for all samples. The intensity of UV emission increased with TiO<sub>2</sub> layer thickness, peaking at 20 nm ZnO/60 nm TiO<sub>2</sub>. The band gaps (<i>E</i><sub><i>g</i></sub>) for the single-layer ZnO and TiO<sub>2</sub> were found to be 3.21 eV and 3.32 eV, respectively. However, the <i>E</i><sub><i>g</i></sub> of the bilayer films increased from 3.27 eV to 3.36 eV as the TiO<sub>2</sub> layer thickness increased.</p></div>\",\"PeriodicalId\":646,\"journal\":{\"name\":\"Journal of Materials Science: Materials in Electronics\",\"volume\":\"36 12\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10854-025-14703-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science: Materials in Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10854-025-14703-4\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10854-025-14703-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

采用脉冲直流磁控溅射技术在玻璃衬底上沉积不同厚度的ZnO/TiO2双层薄膜,两层厚度均为80 nm。采用x射线衍射仪(XRD)、原子力显微镜(AFM)、光致发光仪(PL)和光透过率测试等方法研究了薄膜的结构和光学性能。原子力显微镜分析表明,随着氧化锌层的厚度增加,球形颗粒在双层结构上分散得更细。与ZnO/TiO2双层膜(约8 nm)相比,单层膜的表面粗糙度较低(ZnO和TiO2分别为4.56 nm和4.71 nm)。附着力随TiO2厚度的增加而减小,从50 mN (80 nm ZnO)到10 mN (80 nm TiO2)。XRD分析表明,ZnO/TiO2双分子层为非晶态,而ZnO单层为半晶,具有六方纤锌矿晶体结构,ZnO(100)平面的平均晶粒尺寸为52 nm。PL光谱显示420 nm处有较强的紫色发射,461和467 nm处有较弱的紫色发射。紫外发射强度随着TiO2层厚度的增加而增加,在20 nm ZnO/60 nm TiO2处达到峰值。单层ZnO和TiO2的带隙(Eg)分别为3.21 eV和3.32 eV。随着TiO2层厚的增加,双层膜的Eg由3.27 eV增加到3.36 eV。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optical and structural properties of ZnO/TiO2 bilayer thin films deposited by pulsed DC magnetron sputtering

Pulsed DC magnetron sputtering was employed to deposit ZnO/TiO2 bilayer thin films of varying thicknesses on glass substrates, with both layers being 80 nm thick. The structural and optical properties of the thin films were investigated using X-ray diffraction (XRD), atomic force microscopy (AFM), photoluminescence (PL), and optical transmittance measurements. The AFM analysis revealed a fine dispersion of spherical particles on the bilayer, with thicker ZnO layers leading to an increase in particle size. The single-layer film exhibited lower surface roughness (4.56 nm and 4.71 nm for ZnO and TiO2, respectively) compared to the ZnO/TiO2 bilayer (approximately 8 nm). The adhesion force decreased with increasing TiO2 thickness, from 50 mN (80 nm ZnO) to 10 mN (80 nm TiO2). XRD analysis indicated that the ZnO/TiO2 bilayer are amorphous, while the single ZnO layer is semi-crystalline with a hexagonal wurtzite crystal structure with an average crystallite size of 52 nm for the ZnO (100) plane. PL spectroscopy showed a strong violet emission at 420 nm, along with weaker emissions at 461 and 467 nm for all samples. The intensity of UV emission increased with TiO2 layer thickness, peaking at 20 nm ZnO/60 nm TiO2. The band gaps (Eg) for the single-layer ZnO and TiO2 were found to be 3.21 eV and 3.32 eV, respectively. However, the Eg of the bilayer films increased from 3.27 eV to 3.36 eV as the TiO2 layer thickness increased.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science: Materials in Electronics
Journal of Materials Science: Materials in Electronics 工程技术-材料科学:综合
CiteScore
5.00
自引率
7.10%
发文量
1931
审稿时长
2 months
期刊介绍: The Journal of Materials Science: Materials in Electronics is an established refereed companion to the Journal of Materials Science. It publishes papers on materials and their applications in modern electronics, covering the ground between fundamental science, such as semiconductor physics, and work concerned specifically with applications. It explores the growth and preparation of new materials, as well as their processing, fabrication, bonding and encapsulation, together with the reliability, failure analysis, quality assurance and characterization related to the whole range of applications in electronics. The Journal presents papers in newly developing fields such as low dimensional structures and devices, optoelectronics including III-V compounds, glasses and linear/non-linear crystal materials and lasers, high Tc superconductors, conducting polymers, thick film materials and new contact technologies, as well as the established electronics device and circuit materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信