通过弯曲线天线(MLA)降低阿尔茨海默病β淀粉样蛋白(Aβ)的新型便携式鸟笼设计

IF 4.4 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Felipe Perez;Jorge Morisaki;Haitham Kanakri;Maher Rizkalla;Ahmed Abdalla
{"title":"通过弯曲线天线(MLA)降低阿尔茨海默病β淀粉样蛋白(Aβ)的新型便携式鸟笼设计","authors":"Felipe Perez;Jorge Morisaki;Haitham Kanakri;Maher Rizkalla;Ahmed Abdalla","doi":"10.1109/JTEHM.2025.3559693","DOIUrl":null,"url":null,"abstract":"Late Onset Alzheimer’s Disease (LOAD) is the most common cause of dementia, characterized by the deposition of plaques primarily of neurotoxic amyloid-<inline-formula> <tex-math>$\\beta $ </tex-math></inline-formula> (<inline-formula> <tex-math>$A\\beta $ </tex-math></inline-formula>) peptide and tau protein. Our objective is to develop a noninvasive therapy to decrease the toxic A<inline-formula> <tex-math>$\\beta $ </tex-math></inline-formula> levels, using repeated electromagnetic field stimulation (REMFS) in the brain of Alzheimer’s disease patients. We previously examined the effects of REMFS on <inline-formula> <tex-math>$A\\beta $ </tex-math></inline-formula> levels in primary human brain (PHB) cultures at different frequencies, powers, and specific absorption rates (SAR). PHB cultures at day in vitro (DIV7) treated with 64 MHz with a SAR of 0.6 W/Kg, one hour daily for 14 days (DIV 21) had significantly reduced (p =0.001) levels of secreted <inline-formula> <tex-math>$A\\beta $ </tex-math></inline-formula>-42 and <inline-formula> <tex-math>$A\\beta $ </tex-math></inline-formula>-40 peptide without evidence of toxicity. The EMF frequency and power, and SAR levels used in our work is utilized in MRI’s, thus suggesting REMFS can be further developed in clinical settings to lower (<inline-formula> <tex-math>$A\\beta $ </tex-math></inline-formula>) levels and improve the memory in AD patients. These findings and numerous studies in rodent AD models prompted us to design a portable RF device, appropriate for human use, that will deliver a homogeneous RF power deposition with a SAR value of 0.4-0.9 W/kg to all human brain memory areas, lower (<inline-formula> <tex-math>$A\\beta $ </tex-math></inline-formula>) levels, and potentially improve memory in human AD patients.The research took place at the Indiana University School of Medicine (IUSM) and Purdue University Indianapolis. The first phase was done in PHB cultures at the IUSM. Through this phase, we found that a 64 MHz frequency and an RF power deposition with a SAR of 0.4-0.6 W/kg reduced the (A<inline-formula> <tex-math>$\\beta $ </tex-math></inline-formula>) levels potentially impacting Alzheimer’s disease. The second phase of the project was conducted at Purdue University, we used ANSYS HFSS (High Frequency Simulation System) to design the devices that produced an appropriate penetration depth, polarization, and power deposition with a SAR of 0.4-0.9 W/kg to all memory brain areas of several numerical models. In Phase II-B will validate the device in a physical phantom. Phase III will require the FDA approval and application in clinical trials.The research parameters were translated into a designed product that fits comfortably in human head and fed from an external RF source that generates an RF power deposition with a SAR of 0.4-0.9 W/kg to a realistic numerical brain. The engineering design is flexible by varying the leg capacitors of the Meander Line Antenna (MLA) devices. Thermal outcomes of the results guarantee less than 0.5 C temperature increase within one-hour time of exposure, which can be used in clinical trials for AD patients. Design parameters include dimension of the coil, the MLA structure, conducting material, and capacitance values with the produced EM fields. The flexible design was achieved by varying the additive capacitance between conductors, and via a hybrid approach integrating a birdcage with sixteen MLA. A coil antenna size within 16 cm radius and 13 cm length was achieved. A capacitance between 6.9 nF and 9.2 nF were observed when copper materials with 16 conductors were used to achieve the research parameters in focus.The medical project proposed here has three phases: The initial phase of determining the research parameters for reducing A<inline-formula> <tex-math>$\\beta $ </tex-math></inline-formula> levels in human brain cultures and animal studies was completed at the IUSM. The translational engineering design of the REMS device and the numerical head and Antenna devices was successfully completed and presented in this paper by Purdue University and IUSM. Future phases will require manufacture and experimental validation of the REMS device with FDA approval for human application. Clinical impact: Our biological studies in human brain cultures showed that an RF power with a SAR of 0.4-0.9 W/kg at 64 MHz, lowered A<inline-formula> <tex-math>$\\beta $ </tex-math></inline-formula> levels, which potentially will prevent the death of the brain neurons and improve memory in AD. The fact that we found a safe RF power deposition with a SAR value associated with the proposed biological effects in human neurons and that 64 MHz provides a penetration depth of 13.5 cm that reaches all memory areas in a human brain makes the design and manufacture of this device of high clinical impact in the study of these exposures on the treatment of Alzheimer’s and other protein associate diseases. Also, 64 MHz and RF power deposition with similar SAR levels are administer routinely in routine MRI for more than 4 decades makes it a safe framework for these novel therapeutic strategy.Clinical and Translational Impact Statement: The basic science work presented previously is both mechanistic and translational, and would advance the field of neuroscience as well as AD. This prompted us to joint efforts between the Indiana University School of Medicine and the electrical and computer engineering at Purdue University to design and develop a suitable EMF device for human treatments. Recently, our engineering team designed a birdcage antenna that generate a homogeneous RF power deposition with the same SAR values of our biological experiments in a realistic numerical human brain. Here, the engineering research has been extended to investigate the design of a portable flexible birdcage antenna that will enable adjustments to fit physical patient’s characteristics, such as geometry, head size, and tissue dimensions. This new device is expected to improve SAR uniformity and may reduce the likelihood of untreated regions in the brains of patients during treatments. Also, here we determined that the maximum temperature rise of these exposures was less than 0.5°C, which is a safe level per regulatory agencies. This study considers a portable device system that will achieve the research parameters and patient satisfaction regarding reliability and comfort.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"13 ","pages":"158-173"},"PeriodicalIF":4.4000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10962220","citationCount":"0","resultStr":"{\"title\":\"A Novel Design of a Portable Birdcage via Meander Line Antenna (MLA) to Lower Beta Amyloid (Aβ) in Alzheimer’s Disease\",\"authors\":\"Felipe Perez;Jorge Morisaki;Haitham Kanakri;Maher Rizkalla;Ahmed Abdalla\",\"doi\":\"10.1109/JTEHM.2025.3559693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Late Onset Alzheimer’s Disease (LOAD) is the most common cause of dementia, characterized by the deposition of plaques primarily of neurotoxic amyloid-<inline-formula> <tex-math>$\\\\beta $ </tex-math></inline-formula> (<inline-formula> <tex-math>$A\\\\beta $ </tex-math></inline-formula>) peptide and tau protein. Our objective is to develop a noninvasive therapy to decrease the toxic A<inline-formula> <tex-math>$\\\\beta $ </tex-math></inline-formula> levels, using repeated electromagnetic field stimulation (REMFS) in the brain of Alzheimer’s disease patients. We previously examined the effects of REMFS on <inline-formula> <tex-math>$A\\\\beta $ </tex-math></inline-formula> levels in primary human brain (PHB) cultures at different frequencies, powers, and specific absorption rates (SAR). PHB cultures at day in vitro (DIV7) treated with 64 MHz with a SAR of 0.6 W/Kg, one hour daily for 14 days (DIV 21) had significantly reduced (p =0.001) levels of secreted <inline-formula> <tex-math>$A\\\\beta $ </tex-math></inline-formula>-42 and <inline-formula> <tex-math>$A\\\\beta $ </tex-math></inline-formula>-40 peptide without evidence of toxicity. The EMF frequency and power, and SAR levels used in our work is utilized in MRI’s, thus suggesting REMFS can be further developed in clinical settings to lower (<inline-formula> <tex-math>$A\\\\beta $ </tex-math></inline-formula>) levels and improve the memory in AD patients. These findings and numerous studies in rodent AD models prompted us to design a portable RF device, appropriate for human use, that will deliver a homogeneous RF power deposition with a SAR value of 0.4-0.9 W/kg to all human brain memory areas, lower (<inline-formula> <tex-math>$A\\\\beta $ </tex-math></inline-formula>) levels, and potentially improve memory in human AD patients.The research took place at the Indiana University School of Medicine (IUSM) and Purdue University Indianapolis. The first phase was done in PHB cultures at the IUSM. Through this phase, we found that a 64 MHz frequency and an RF power deposition with a SAR of 0.4-0.6 W/kg reduced the (A<inline-formula> <tex-math>$\\\\beta $ </tex-math></inline-formula>) levels potentially impacting Alzheimer’s disease. The second phase of the project was conducted at Purdue University, we used ANSYS HFSS (High Frequency Simulation System) to design the devices that produced an appropriate penetration depth, polarization, and power deposition with a SAR of 0.4-0.9 W/kg to all memory brain areas of several numerical models. In Phase II-B will validate the device in a physical phantom. Phase III will require the FDA approval and application in clinical trials.The research parameters were translated into a designed product that fits comfortably in human head and fed from an external RF source that generates an RF power deposition with a SAR of 0.4-0.9 W/kg to a realistic numerical brain. The engineering design is flexible by varying the leg capacitors of the Meander Line Antenna (MLA) devices. Thermal outcomes of the results guarantee less than 0.5 C temperature increase within one-hour time of exposure, which can be used in clinical trials for AD patients. Design parameters include dimension of the coil, the MLA structure, conducting material, and capacitance values with the produced EM fields. The flexible design was achieved by varying the additive capacitance between conductors, and via a hybrid approach integrating a birdcage with sixteen MLA. A coil antenna size within 16 cm radius and 13 cm length was achieved. A capacitance between 6.9 nF and 9.2 nF were observed when copper materials with 16 conductors were used to achieve the research parameters in focus.The medical project proposed here has three phases: The initial phase of determining the research parameters for reducing A<inline-formula> <tex-math>$\\\\beta $ </tex-math></inline-formula> levels in human brain cultures and animal studies was completed at the IUSM. The translational engineering design of the REMS device and the numerical head and Antenna devices was successfully completed and presented in this paper by Purdue University and IUSM. Future phases will require manufacture and experimental validation of the REMS device with FDA approval for human application. Clinical impact: Our biological studies in human brain cultures showed that an RF power with a SAR of 0.4-0.9 W/kg at 64 MHz, lowered A<inline-formula> <tex-math>$\\\\beta $ </tex-math></inline-formula> levels, which potentially will prevent the death of the brain neurons and improve memory in AD. The fact that we found a safe RF power deposition with a SAR value associated with the proposed biological effects in human neurons and that 64 MHz provides a penetration depth of 13.5 cm that reaches all memory areas in a human brain makes the design and manufacture of this device of high clinical impact in the study of these exposures on the treatment of Alzheimer’s and other protein associate diseases. Also, 64 MHz and RF power deposition with similar SAR levels are administer routinely in routine MRI for more than 4 decades makes it a safe framework for these novel therapeutic strategy.Clinical and Translational Impact Statement: The basic science work presented previously is both mechanistic and translational, and would advance the field of neuroscience as well as AD. This prompted us to joint efforts between the Indiana University School of Medicine and the electrical and computer engineering at Purdue University to design and develop a suitable EMF device for human treatments. Recently, our engineering team designed a birdcage antenna that generate a homogeneous RF power deposition with the same SAR values of our biological experiments in a realistic numerical human brain. Here, the engineering research has been extended to investigate the design of a portable flexible birdcage antenna that will enable adjustments to fit physical patient’s characteristics, such as geometry, head size, and tissue dimensions. This new device is expected to improve SAR uniformity and may reduce the likelihood of untreated regions in the brains of patients during treatments. Also, here we determined that the maximum temperature rise of these exposures was less than 0.5°C, which is a safe level per regulatory agencies. This study considers a portable device system that will achieve the research parameters and patient satisfaction regarding reliability and comfort.\",\"PeriodicalId\":54255,\"journal\":{\"name\":\"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm\",\"volume\":\"13 \",\"pages\":\"158-173\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10962220\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10962220/\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10962220/","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

最近,我们的工程团队设计了一种鸟笼天线,可以在真实的数值人脑中产生具有与我们生物实验相同SAR值的均匀射频功率沉积。在这里,工程研究已经扩展到研究便携式柔性鸟笼天线的设计,该天线将能够调整以适应身体患者的特征,如几何形状,头部大小和组织尺寸。这种新设备有望改善SAR的均匀性,并可能减少治疗期间患者大脑中未治疗区域的可能性。此外,我们确定这些暴露的最高温升小于0.5°C,这是监管机构的安全水平。本研究考虑一种便携式设备系统,将达到研究参数和患者满意度的可靠性和舒适性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Design of a Portable Birdcage via Meander Line Antenna (MLA) to Lower Beta Amyloid (Aβ) in Alzheimer’s Disease
Late Onset Alzheimer’s Disease (LOAD) is the most common cause of dementia, characterized by the deposition of plaques primarily of neurotoxic amyloid- $\beta $ ( $A\beta $ ) peptide and tau protein. Our objective is to develop a noninvasive therapy to decrease the toxic A $\beta $ levels, using repeated electromagnetic field stimulation (REMFS) in the brain of Alzheimer’s disease patients. We previously examined the effects of REMFS on $A\beta $ levels in primary human brain (PHB) cultures at different frequencies, powers, and specific absorption rates (SAR). PHB cultures at day in vitro (DIV7) treated with 64 MHz with a SAR of 0.6 W/Kg, one hour daily for 14 days (DIV 21) had significantly reduced (p =0.001) levels of secreted $A\beta $ -42 and $A\beta $ -40 peptide without evidence of toxicity. The EMF frequency and power, and SAR levels used in our work is utilized in MRI’s, thus suggesting REMFS can be further developed in clinical settings to lower ( $A\beta $ ) levels and improve the memory in AD patients. These findings and numerous studies in rodent AD models prompted us to design a portable RF device, appropriate for human use, that will deliver a homogeneous RF power deposition with a SAR value of 0.4-0.9 W/kg to all human brain memory areas, lower ( $A\beta $ ) levels, and potentially improve memory in human AD patients.The research took place at the Indiana University School of Medicine (IUSM) and Purdue University Indianapolis. The first phase was done in PHB cultures at the IUSM. Through this phase, we found that a 64 MHz frequency and an RF power deposition with a SAR of 0.4-0.6 W/kg reduced the (A $\beta $ ) levels potentially impacting Alzheimer’s disease. The second phase of the project was conducted at Purdue University, we used ANSYS HFSS (High Frequency Simulation System) to design the devices that produced an appropriate penetration depth, polarization, and power deposition with a SAR of 0.4-0.9 W/kg to all memory brain areas of several numerical models. In Phase II-B will validate the device in a physical phantom. Phase III will require the FDA approval and application in clinical trials.The research parameters were translated into a designed product that fits comfortably in human head and fed from an external RF source that generates an RF power deposition with a SAR of 0.4-0.9 W/kg to a realistic numerical brain. The engineering design is flexible by varying the leg capacitors of the Meander Line Antenna (MLA) devices. Thermal outcomes of the results guarantee less than 0.5 C temperature increase within one-hour time of exposure, which can be used in clinical trials for AD patients. Design parameters include dimension of the coil, the MLA structure, conducting material, and capacitance values with the produced EM fields. The flexible design was achieved by varying the additive capacitance between conductors, and via a hybrid approach integrating a birdcage with sixteen MLA. A coil antenna size within 16 cm radius and 13 cm length was achieved. A capacitance between 6.9 nF and 9.2 nF were observed when copper materials with 16 conductors were used to achieve the research parameters in focus.The medical project proposed here has three phases: The initial phase of determining the research parameters for reducing A $\beta $ levels in human brain cultures and animal studies was completed at the IUSM. The translational engineering design of the REMS device and the numerical head and Antenna devices was successfully completed and presented in this paper by Purdue University and IUSM. Future phases will require manufacture and experimental validation of the REMS device with FDA approval for human application. Clinical impact: Our biological studies in human brain cultures showed that an RF power with a SAR of 0.4-0.9 W/kg at 64 MHz, lowered A $\beta $ levels, which potentially will prevent the death of the brain neurons and improve memory in AD. The fact that we found a safe RF power deposition with a SAR value associated with the proposed biological effects in human neurons and that 64 MHz provides a penetration depth of 13.5 cm that reaches all memory areas in a human brain makes the design and manufacture of this device of high clinical impact in the study of these exposures on the treatment of Alzheimer’s and other protein associate diseases. Also, 64 MHz and RF power deposition with similar SAR levels are administer routinely in routine MRI for more than 4 decades makes it a safe framework for these novel therapeutic strategy.Clinical and Translational Impact Statement: The basic science work presented previously is both mechanistic and translational, and would advance the field of neuroscience as well as AD. This prompted us to joint efforts between the Indiana University School of Medicine and the electrical and computer engineering at Purdue University to design and develop a suitable EMF device for human treatments. Recently, our engineering team designed a birdcage antenna that generate a homogeneous RF power deposition with the same SAR values of our biological experiments in a realistic numerical human brain. Here, the engineering research has been extended to investigate the design of a portable flexible birdcage antenna that will enable adjustments to fit physical patient’s characteristics, such as geometry, head size, and tissue dimensions. This new device is expected to improve SAR uniformity and may reduce the likelihood of untreated regions in the brains of patients during treatments. Also, here we determined that the maximum temperature rise of these exposures was less than 0.5°C, which is a safe level per regulatory agencies. This study considers a portable device system that will achieve the research parameters and patient satisfaction regarding reliability and comfort.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.40
自引率
2.90%
发文量
65
审稿时长
27 weeks
期刊介绍: The IEEE Journal of Translational Engineering in Health and Medicine is an open access product that bridges the engineering and clinical worlds, focusing on detailed descriptions of advanced technical solutions to a clinical need along with clinical results and healthcare relevance. The journal provides a platform for state-of-the-art technology directions in the interdisciplinary field of biomedical engineering, embracing engineering, life sciences and medicine. A unique aspect of the journal is its ability to foster a collaboration between physicians and engineers for presenting broad and compelling real world technological and engineering solutions that can be implemented in the interest of improving quality of patient care and treatment outcomes, thereby reducing costs and improving efficiency. The journal provides an active forum for clinical research and relevant state-of the-art technology for members of all the IEEE societies that have an interest in biomedical engineering as well as reaching out directly to physicians and the medical community through the American Medical Association (AMA) and other clinical societies. The scope of the journal includes, but is not limited, to topics on: Medical devices, healthcare delivery systems, global healthcare initiatives, and ICT based services; Technological relevance to healthcare cost reduction; Technology affecting healthcare management, decision-making, and policy; Advanced technical work that is applied to solving specific clinical needs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信