基于卷积神经网络的SDSS测光图像目标检测算法

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Ziyi Zhang;Bo Qiu;Xia Jiang;Ali Luo;Fuji Ren
{"title":"基于卷积神经网络的SDSS测光图像目标检测算法","authors":"Ziyi Zhang;Bo Qiu;Xia Jiang;Ali Luo;Fuji Ren","doi":"10.1109/LSP.2025.3558115","DOIUrl":null,"url":null,"abstract":"The Sloan Digital Sky Survey (SDSS), a large-scale astronomical survey project, has released a vast volume of photometric images. These images play a pivotal role in deriving fundamental parameters of celestial objects and investigating the structure of the universe. Nevertheless, in dense star fields, the characteristics of celestial sources are intricate, rendering traditional methods incapable of conducting precise analyses. To address this challenge, this paper introduces a new algorithm named DSDNet for detecting celestial sources in dense star fields and counting them. During the feature extraction phase, DSDNet generates larger feature maps, thereby preserving more information about small targets. By incorporating a convolutional attention module, the model's capacity to learn the features of celestial sources in dense star fields is augmented. Furthermore, to more effectively manage the blending phenomenon among sources, DSDNet integrates CNN and Transformer architectures, enhancing the model's ability to comprehend global features. Experimental findings show that DSDNet exhibits excellent performance, attaining an F1-score of 97.23%. This makes it a valuable resource for aiding SDSS in processing dense star field images.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"1660-1664"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DSDNet: Target Detection Algorithm for SDSS Photometric Images Based on Convolutional Neural Networks\",\"authors\":\"Ziyi Zhang;Bo Qiu;Xia Jiang;Ali Luo;Fuji Ren\",\"doi\":\"10.1109/LSP.2025.3558115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Sloan Digital Sky Survey (SDSS), a large-scale astronomical survey project, has released a vast volume of photometric images. These images play a pivotal role in deriving fundamental parameters of celestial objects and investigating the structure of the universe. Nevertheless, in dense star fields, the characteristics of celestial sources are intricate, rendering traditional methods incapable of conducting precise analyses. To address this challenge, this paper introduces a new algorithm named DSDNet for detecting celestial sources in dense star fields and counting them. During the feature extraction phase, DSDNet generates larger feature maps, thereby preserving more information about small targets. By incorporating a convolutional attention module, the model's capacity to learn the features of celestial sources in dense star fields is augmented. Furthermore, to more effectively manage the blending phenomenon among sources, DSDNet integrates CNN and Transformer architectures, enhancing the model's ability to comprehend global features. Experimental findings show that DSDNet exhibits excellent performance, attaining an F1-score of 97.23%. This makes it a valuable resource for aiding SDSS in processing dense star field images.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"32 \",\"pages\":\"1660-1664\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10949849/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10949849/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

斯隆数字巡天(SDSS)是一个大规模的天文调查项目,已经发布了大量的光度图像。这些图像在推导天体的基本参数和研究宇宙结构方面起着关键作用。然而,在密集的星场中,天体光源的特征是复杂的,使得传统的方法无法进行精确的分析。为了解决这一问题,本文提出了一种新的DSDNet算法,用于密集星场中天体源的探测和计数。在特征提取阶段,DSDNet生成更大的特征图,从而保留了更多关于小目标的信息。通过加入卷积注意模块,增强了模型在密集星场中学习天体特征的能力。此外,为了更有效地管理源之间的混合现象,DSDNet集成了CNN和Transformer架构,增强了模型理解全局特征的能力。实验结果表明,DSDNet具有优异的性能,f1得分为97.23%。这使得它成为辅助SDSS处理密集星场图像的宝贵资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DSDNet: Target Detection Algorithm for SDSS Photometric Images Based on Convolutional Neural Networks
The Sloan Digital Sky Survey (SDSS), a large-scale astronomical survey project, has released a vast volume of photometric images. These images play a pivotal role in deriving fundamental parameters of celestial objects and investigating the structure of the universe. Nevertheless, in dense star fields, the characteristics of celestial sources are intricate, rendering traditional methods incapable of conducting precise analyses. To address this challenge, this paper introduces a new algorithm named DSDNet for detecting celestial sources in dense star fields and counting them. During the feature extraction phase, DSDNet generates larger feature maps, thereby preserving more information about small targets. By incorporating a convolutional attention module, the model's capacity to learn the features of celestial sources in dense star fields is augmented. Furthermore, to more effectively manage the blending phenomenon among sources, DSDNet integrates CNN and Transformer architectures, enhancing the model's ability to comprehend global features. Experimental findings show that DSDNet exhibits excellent performance, attaining an F1-score of 97.23%. This makes it a valuable resource for aiding SDSS in processing dense star field images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信