Raphael Ahiaklo-Kuz;Sylvester Aboagye;Omar Maraqa;Telex M. N. Ngatched
{"title":"基于液晶ris接收机的可见光通信与定位集成系统的设计与优化","authors":"Raphael Ahiaklo-Kuz;Sylvester Aboagye;Omar Maraqa;Telex M. N. Ngatched","doi":"10.1109/JPHOT.2025.3559061","DOIUrl":null,"url":null,"abstract":"Visible Light Communication (VLC) is emerging as a pivotal technology in next-generation wireless networks, leveraging the abundant unlicensed spectrum to achieve ultra-high data rates with minimal energy overhead. This paper presents the design and optimization of a novel integrated VLC and localization (VLCL) system enhanced by liquid crystal-based reconfigurable intelligent surfaces (LC-RISs). The proposed system architecture facilitates simultaneous communication, localization, and illumination within indoor environments by dynamically adjusting the refractive index of the LC-RIS under an electric field to precisely control light propagation and focus. We address two core optimization challenges: sum rate maximization and energy efficiency maximization, both of which are formulated as constrained optimization problems. While the sum rate problem is convex and solvable using standard optimization techniques, the energy efficiency problem is non-convex, necessitating the development of a low-complexity solution via fractional programming. Simulation results substantiate the efficacy of the LC-RIS in significantly enhancing both sum rate and energy efficiency, particularly in scenarios with dense number of users and access point configurations, thereby demonstrating the LC-RIS's potential to substantially improve the performance of VLCL systems.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"17 3","pages":"1-9"},"PeriodicalIF":2.1000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10959088","citationCount":"0","resultStr":"{\"title\":\"Design and Optimization of an Integrated Visible Light Communication and Localization System Using Liquid Crystal Based-RIS Receivers\",\"authors\":\"Raphael Ahiaklo-Kuz;Sylvester Aboagye;Omar Maraqa;Telex M. N. Ngatched\",\"doi\":\"10.1109/JPHOT.2025.3559061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visible Light Communication (VLC) is emerging as a pivotal technology in next-generation wireless networks, leveraging the abundant unlicensed spectrum to achieve ultra-high data rates with minimal energy overhead. This paper presents the design and optimization of a novel integrated VLC and localization (VLCL) system enhanced by liquid crystal-based reconfigurable intelligent surfaces (LC-RISs). The proposed system architecture facilitates simultaneous communication, localization, and illumination within indoor environments by dynamically adjusting the refractive index of the LC-RIS under an electric field to precisely control light propagation and focus. We address two core optimization challenges: sum rate maximization and energy efficiency maximization, both of which are formulated as constrained optimization problems. While the sum rate problem is convex and solvable using standard optimization techniques, the energy efficiency problem is non-convex, necessitating the development of a low-complexity solution via fractional programming. Simulation results substantiate the efficacy of the LC-RIS in significantly enhancing both sum rate and energy efficiency, particularly in scenarios with dense number of users and access point configurations, thereby demonstrating the LC-RIS's potential to substantially improve the performance of VLCL systems.\",\"PeriodicalId\":13204,\"journal\":{\"name\":\"IEEE Photonics Journal\",\"volume\":\"17 3\",\"pages\":\"1-9\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10959088\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Photonics Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10959088/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Journal","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10959088/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Design and Optimization of an Integrated Visible Light Communication and Localization System Using Liquid Crystal Based-RIS Receivers
Visible Light Communication (VLC) is emerging as a pivotal technology in next-generation wireless networks, leveraging the abundant unlicensed spectrum to achieve ultra-high data rates with minimal energy overhead. This paper presents the design and optimization of a novel integrated VLC and localization (VLCL) system enhanced by liquid crystal-based reconfigurable intelligent surfaces (LC-RISs). The proposed system architecture facilitates simultaneous communication, localization, and illumination within indoor environments by dynamically adjusting the refractive index of the LC-RIS under an electric field to precisely control light propagation and focus. We address two core optimization challenges: sum rate maximization and energy efficiency maximization, both of which are formulated as constrained optimization problems. While the sum rate problem is convex and solvable using standard optimization techniques, the energy efficiency problem is non-convex, necessitating the development of a low-complexity solution via fractional programming. Simulation results substantiate the efficacy of the LC-RIS in significantly enhancing both sum rate and energy efficiency, particularly in scenarios with dense number of users and access point configurations, thereby demonstrating the LC-RIS's potential to substantially improve the performance of VLCL systems.
期刊介绍:
Breakthroughs in the generation of light and in its control and utilization have given rise to the field of Photonics, a rapidly expanding area of science and technology with major technological and economic impact. Photonics integrates quantum electronics and optics to accelerate progress in the generation of novel photon sources and in their utilization in emerging applications at the micro and nano scales spanning from the far-infrared/THz to the x-ray region of the electromagnetic spectrum. IEEE Photonics Journal is an online-only journal dedicated to the rapid disclosure of top-quality peer-reviewed research at the forefront of all areas of photonics. Contributions addressing issues ranging from fundamental understanding to emerging technologies and applications are within the scope of the Journal. The Journal includes topics in: Photon sources from far infrared to X-rays, Photonics materials and engineered photonic structures, Integrated optics and optoelectronic, Ultrafast, attosecond, high field and short wavelength photonics, Biophotonics, including DNA photonics, Nanophotonics, Magnetophotonics, Fundamentals of light propagation and interaction; nonlinear effects, Optical data storage, Fiber optics and optical communications devices, systems, and technologies, Micro Opto Electro Mechanical Systems (MOEMS), Microwave photonics, Optical Sensors.