代数变种的内射自映射

IF 0.7 2区 数学 Q2 MATHEMATICS
Indranil Biswas , Nilkantha Das
{"title":"代数变种的内射自映射","authors":"Indranil Biswas ,&nbsp;Nilkantha Das","doi":"10.1016/j.jpaa.2025.107988","DOIUrl":null,"url":null,"abstract":"<div><div>A conjecture of Miyanishi says that an endomorphism of an algebraic variety, defined over an algebraically closed field of characteristic zero, is an automorphism if the endomorphism is injective outside a closed subset of codimension at least 2. We prove the conjecture in the following cases:<ul><li><span>(1)</span><span><div>The variety is non-singular.</div></span></li><li><span>(2)</span><span><div>The variety is a surface.</div></span></li><li><span>(3)</span><span><div>The variety is locally a complete intersection that is regular in codimension 2.</div></span></li></ul> We also discuss a few instances where an endomorphism of a variety, satisfying the hypothesis of the conjecture of Miyanishi, induces an automorphism of the non-singular locus of the variety. Under additional hypotheses, we prove that the conjecture holds when the variety has only isolated singularities.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 6","pages":"Article 107988"},"PeriodicalIF":0.7000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the injective self-maps of algebraic varieties\",\"authors\":\"Indranil Biswas ,&nbsp;Nilkantha Das\",\"doi\":\"10.1016/j.jpaa.2025.107988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A conjecture of Miyanishi says that an endomorphism of an algebraic variety, defined over an algebraically closed field of characteristic zero, is an automorphism if the endomorphism is injective outside a closed subset of codimension at least 2. We prove the conjecture in the following cases:<ul><li><span>(1)</span><span><div>The variety is non-singular.</div></span></li><li><span>(2)</span><span><div>The variety is a surface.</div></span></li><li><span>(3)</span><span><div>The variety is locally a complete intersection that is regular in codimension 2.</div></span></li></ul> We also discuss a few instances where an endomorphism of a variety, satisfying the hypothesis of the conjecture of Miyanishi, induces an automorphism of the non-singular locus of the variety. Under additional hypotheses, we prove that the conjecture holds when the variety has only isolated singularities.</div></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":\"229 6\",\"pages\":\"Article 107988\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404925001276\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404925001276","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Miyanishi的一个猜想说,定义在特征为0的代数闭域上的代数变量的自同构,如果自同构在至少2维的闭子集外内射,则是自同构。我们在以下情况下证明了这个猜想:(1)变种是非奇异的(2)变种是一个曲面(3)变种是一个在余维数2上正则的局部完全交。我们还讨论了几个例子,其中一个品种的自同态,满足Miyanishi猜想的假设,诱导该品种的非奇异轨迹的自同态。在附加的假设下,我们证明了当变异只有孤立的奇点时,这个猜想成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the injective self-maps of algebraic varieties
A conjecture of Miyanishi says that an endomorphism of an algebraic variety, defined over an algebraically closed field of characteristic zero, is an automorphism if the endomorphism is injective outside a closed subset of codimension at least 2. We prove the conjecture in the following cases:
  • (1)
    The variety is non-singular.
  • (2)
    The variety is a surface.
  • (3)
    The variety is locally a complete intersection that is regular in codimension 2.
We also discuss a few instances where an endomorphism of a variety, satisfying the hypothesis of the conjecture of Miyanishi, induces an automorphism of the non-singular locus of the variety. Under additional hypotheses, we prove that the conjecture holds when the variety has only isolated singularities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信