Nela Maksimovic , Tatjana Damnjanovic , Biljana Jekic , Ivana Novakovic , Aleksandra Djuric-Zdravkovic , Marija Dusanovic-Pjevic , Milka Grk , Milica Pesic , Ana Djuranovic Uklein , Milica Rasic , Natasa Stojanovski , Dijana Perovic
{"title":"新证据支持女性在先天性异常和神经发育障碍患者中的保护作用","authors":"Nela Maksimovic , Tatjana Damnjanovic , Biljana Jekic , Ivana Novakovic , Aleksandra Djuric-Zdravkovic , Marija Dusanovic-Pjevic , Milka Grk , Milica Pesic , Ana Djuranovic Uklein , Milica Rasic , Natasa Stojanovski , Dijana Perovic","doi":"10.1016/j.earlhumdev.2025.106269","DOIUrl":null,"url":null,"abstract":"<div><div>The influence of chromosomal sex on human diseases is recognized but underresearched, particularly in diseases with early developmental origins. Copy number variations (CNVs) from sex chromosomes or autosomes, which cause different gene expressions, may influence the disease preferences in females and males. Chromosomal microarray is a standard method for detecting CNVs, with a diagnostic yield of approximately 15 % among patients with congenital anomalies and neurodevelopmental disorders, the primary indications for the analysis. Here, we explore sex disparities in phenotype prevalence and CNV detection rates in patients referred for chromosomal microarray to identify sex-biased traits and CNVs. Our cohort comprises 1412 patients, with a male-to-female ratio of 1.6 to 1. Despite being outnumbered, females are significantly more likely to receive a genetic diagnosis through this type of molecular karyotyping. Most of the patients have neurodevelopmental disorders with other comorbidities. Females have a higher frequency of comorbidities, but the difference in diagnostic yield is significant only in the groups with simpler phenotypes (≤2 comorbidities). Higher diagnostic yield is revealed for congenital heart disease, urogenital anomalies, and the autism spectrum group. All three categories show populational preponderance in males, supporting a higher threshold liability model in females.</div></div>","PeriodicalId":11435,"journal":{"name":"Early human development","volume":"205 ","pages":"Article 106269"},"PeriodicalIF":2.2000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New evidence supporting female protective effect in patients with congenital anomalies and neurodevelopmental disorders\",\"authors\":\"Nela Maksimovic , Tatjana Damnjanovic , Biljana Jekic , Ivana Novakovic , Aleksandra Djuric-Zdravkovic , Marija Dusanovic-Pjevic , Milka Grk , Milica Pesic , Ana Djuranovic Uklein , Milica Rasic , Natasa Stojanovski , Dijana Perovic\",\"doi\":\"10.1016/j.earlhumdev.2025.106269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The influence of chromosomal sex on human diseases is recognized but underresearched, particularly in diseases with early developmental origins. Copy number variations (CNVs) from sex chromosomes or autosomes, which cause different gene expressions, may influence the disease preferences in females and males. Chromosomal microarray is a standard method for detecting CNVs, with a diagnostic yield of approximately 15 % among patients with congenital anomalies and neurodevelopmental disorders, the primary indications for the analysis. Here, we explore sex disparities in phenotype prevalence and CNV detection rates in patients referred for chromosomal microarray to identify sex-biased traits and CNVs. Our cohort comprises 1412 patients, with a male-to-female ratio of 1.6 to 1. Despite being outnumbered, females are significantly more likely to receive a genetic diagnosis through this type of molecular karyotyping. Most of the patients have neurodevelopmental disorders with other comorbidities. Females have a higher frequency of comorbidities, but the difference in diagnostic yield is significant only in the groups with simpler phenotypes (≤2 comorbidities). Higher diagnostic yield is revealed for congenital heart disease, urogenital anomalies, and the autism spectrum group. All three categories show populational preponderance in males, supporting a higher threshold liability model in females.</div></div>\",\"PeriodicalId\":11435,\"journal\":{\"name\":\"Early human development\",\"volume\":\"205 \",\"pages\":\"Article 106269\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Early human development\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378378225000799\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OBSTETRICS & GYNECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Early human development","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378378225000799","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OBSTETRICS & GYNECOLOGY","Score":null,"Total":0}
New evidence supporting female protective effect in patients with congenital anomalies and neurodevelopmental disorders
The influence of chromosomal sex on human diseases is recognized but underresearched, particularly in diseases with early developmental origins. Copy number variations (CNVs) from sex chromosomes or autosomes, which cause different gene expressions, may influence the disease preferences in females and males. Chromosomal microarray is a standard method for detecting CNVs, with a diagnostic yield of approximately 15 % among patients with congenital anomalies and neurodevelopmental disorders, the primary indications for the analysis. Here, we explore sex disparities in phenotype prevalence and CNV detection rates in patients referred for chromosomal microarray to identify sex-biased traits and CNVs. Our cohort comprises 1412 patients, with a male-to-female ratio of 1.6 to 1. Despite being outnumbered, females are significantly more likely to receive a genetic diagnosis through this type of molecular karyotyping. Most of the patients have neurodevelopmental disorders with other comorbidities. Females have a higher frequency of comorbidities, but the difference in diagnostic yield is significant only in the groups with simpler phenotypes (≤2 comorbidities). Higher diagnostic yield is revealed for congenital heart disease, urogenital anomalies, and the autism spectrum group. All three categories show populational preponderance in males, supporting a higher threshold liability model in females.
期刊介绍:
Established as an authoritative, highly cited voice on early human development, Early Human Development provides a unique opportunity for researchers and clinicians to bridge the communication gap between disciplines. Creating a forum for the productive exchange of ideas concerning early human growth and development, the journal publishes original research and clinical papers with particular emphasis on the continuum between fetal life and the perinatal period; aspects of postnatal growth influenced by early events; and the safeguarding of the quality of human survival.
The first comprehensive and interdisciplinary journal in this area of growing importance, Early Human Development offers pertinent contributions to the following subject areas:
Fetology; perinatology; pediatrics; growth and development; obstetrics; reproduction and fertility; epidemiology; behavioural sciences; nutrition and metabolism; teratology; neurology; brain biology; developmental psychology and screening.