Wade Hindes , Reiyah Jacobs , Benjamin Keller , Albert Kim , Peter Ye , Aaron Zhou
{"title":"单键生成半群中不可约多项式的比例","authors":"Wade Hindes , Reiyah Jacobs , Benjamin Keller , Albert Kim , Peter Ye , Aaron Zhou","doi":"10.1016/j.jalgebra.2025.04.011","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>p</em> be a prime number and let <span><math><mi>S</mi><mo>=</mo><mo>{</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>+</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>+</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>}</mo></math></span> be a finite set of unicritical polynomials for some <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>∈</mo><mi>Z</mi></math></span>. Moreover, assume that <em>S</em> contains at least one irreducible polynomial over <span><math><mi>Q</mi></math></span>. Then we construct a large, explicit subset of irreducible polynomials within the semigroup generated by <em>S</em> under composition; in fact, we show that this subset has positive asymptotic density within the full semigroup when we count polynomials by degree. In addition, when <span><math><mi>p</mi><mo>=</mo><mn>2</mn></math></span> we construct an infinite family of semigroups that break the local-global principle for irreducibility. To do this, we use a mix of algebraic and arithmetic techniques and results, including Runge's method, the elliptic curve Chabauty method, and Fermat's Last Theorem.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"677 ","pages":"Pages 394-429"},"PeriodicalIF":0.8000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the proportion of irreducible polynomials in unicritically generated semigroups\",\"authors\":\"Wade Hindes , Reiyah Jacobs , Benjamin Keller , Albert Kim , Peter Ye , Aaron Zhou\",\"doi\":\"10.1016/j.jalgebra.2025.04.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>p</em> be a prime number and let <span><math><mi>S</mi><mo>=</mo><mo>{</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>+</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>+</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>}</mo></math></span> be a finite set of unicritical polynomials for some <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>∈</mo><mi>Z</mi></math></span>. Moreover, assume that <em>S</em> contains at least one irreducible polynomial over <span><math><mi>Q</mi></math></span>. Then we construct a large, explicit subset of irreducible polynomials within the semigroup generated by <em>S</em> under composition; in fact, we show that this subset has positive asymptotic density within the full semigroup when we count polynomials by degree. In addition, when <span><math><mi>p</mi><mo>=</mo><mn>2</mn></math></span> we construct an infinite family of semigroups that break the local-global principle for irreducibility. To do this, we use a mix of algebraic and arithmetic techniques and results, including Runge's method, the elliptic curve Chabauty method, and Fermat's Last Theorem.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"677 \",\"pages\":\"Pages 394-429\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325002212\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325002212","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the proportion of irreducible polynomials in unicritically generated semigroups
Let p be a prime number and let be a finite set of unicritical polynomials for some . Moreover, assume that S contains at least one irreducible polynomial over . Then we construct a large, explicit subset of irreducible polynomials within the semigroup generated by S under composition; in fact, we show that this subset has positive asymptotic density within the full semigroup when we count polynomials by degree. In addition, when we construct an infinite family of semigroups that break the local-global principle for irreducibility. To do this, we use a mix of algebraic and arithmetic techniques and results, including Runge's method, the elliptic curve Chabauty method, and Fermat's Last Theorem.
期刊介绍:
The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.