Ahsan Khan , Gatera Anicet , Hafiz Umair Asdullah , Muhammad Ahmad Hassan , Youhong Song
{"title":"RNA修饰:伪尿嘧啶(Ψ)及其在功能性植物生物学中的作用的当代综述","authors":"Ahsan Khan , Gatera Anicet , Hafiz Umair Asdullah , Muhammad Ahmad Hassan , Youhong Song","doi":"10.1016/j.plantsci.2025.112522","DOIUrl":null,"url":null,"abstract":"<div><div>Pseudouridine (Ψ) is a modified nucleoside present in diverse RNA species, including mRNA (messenger RNA), snRNA (small nuclear RNA), rRNA (ribosomal RNA) and tRNA (transfer RNA). In plants, Ψ serves a critical function in RNA modification, supporting the stability, structural integrity, and functionality of RNA molecules. This review provides the various roles that Ψ fulfils in the modification of plant RNA biology, encompassing effects on biosynthesis pathways, regulatory mechanisms, stability, and translation efficiency. Additionally, we discuss recent advancements in the dynamic regulation of Ψ deposition in response to environmental stimuli and stressors. Elucidating Ψ's roles contributes to the comprehension of plant biology and may facilitate developments in biotechnology and crop improvement.</div></div>","PeriodicalId":20273,"journal":{"name":"Plant Science","volume":"356 ","pages":"Article 112522"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RNA modification: A contemporary review of pseudouridine (Ψ) and its role in functional plant biology\",\"authors\":\"Ahsan Khan , Gatera Anicet , Hafiz Umair Asdullah , Muhammad Ahmad Hassan , Youhong Song\",\"doi\":\"10.1016/j.plantsci.2025.112522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Pseudouridine (Ψ) is a modified nucleoside present in diverse RNA species, including mRNA (messenger RNA), snRNA (small nuclear RNA), rRNA (ribosomal RNA) and tRNA (transfer RNA). In plants, Ψ serves a critical function in RNA modification, supporting the stability, structural integrity, and functionality of RNA molecules. This review provides the various roles that Ψ fulfils in the modification of plant RNA biology, encompassing effects on biosynthesis pathways, regulatory mechanisms, stability, and translation efficiency. Additionally, we discuss recent advancements in the dynamic regulation of Ψ deposition in response to environmental stimuli and stressors. Elucidating Ψ's roles contributes to the comprehension of plant biology and may facilitate developments in biotechnology and crop improvement.</div></div>\",\"PeriodicalId\":20273,\"journal\":{\"name\":\"Plant Science\",\"volume\":\"356 \",\"pages\":\"Article 112522\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168945225001402\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Science","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168945225001402","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
RNA modification: A contemporary review of pseudouridine (Ψ) and its role in functional plant biology
Pseudouridine (Ψ) is a modified nucleoside present in diverse RNA species, including mRNA (messenger RNA), snRNA (small nuclear RNA), rRNA (ribosomal RNA) and tRNA (transfer RNA). In plants, Ψ serves a critical function in RNA modification, supporting the stability, structural integrity, and functionality of RNA molecules. This review provides the various roles that Ψ fulfils in the modification of plant RNA biology, encompassing effects on biosynthesis pathways, regulatory mechanisms, stability, and translation efficiency. Additionally, we discuss recent advancements in the dynamic regulation of Ψ deposition in response to environmental stimuli and stressors. Elucidating Ψ's roles contributes to the comprehension of plant biology and may facilitate developments in biotechnology and crop improvement.
期刊介绍:
Plant Science will publish in the minimum of time, research manuscripts as well as commissioned reviews and commentaries recommended by its referees in all areas of experimental plant biology with emphasis in the broad areas of genomics, proteomics, biochemistry (including enzymology), physiology, cell biology, development, genetics, functional plant breeding, systems biology and the interaction of plants with the environment.
Manuscripts for full consideration should be written concisely and essentially as a final report. The main criterion for publication is that the manuscript must contain original and significant insights that lead to a better understanding of fundamental plant biology. Papers centering on plant cell culture should be of interest to a wide audience and methods employed result in a substantial improvement over existing established techniques and approaches. Methods papers are welcome only when the technique(s) described is novel or provides a major advancement of established protocols.