土壤自净过程中土壤细菌群落和多环芳烃降解基因对多环芳烃的响应:来自微观实验的证据

IF 4.8 2区 农林科学 Q1 SOIL SCIENCE
Xian Zhou , Xuwei Li , Chao Lu , Jian Wang , Chao Qin , Wanting Ling
{"title":"土壤自净过程中土壤细菌群落和多环芳烃降解基因对多环芳烃的响应:来自微观实验的证据","authors":"Xian Zhou ,&nbsp;Xuwei Li ,&nbsp;Chao Lu ,&nbsp;Jian Wang ,&nbsp;Chao Qin ,&nbsp;Wanting Ling","doi":"10.1016/j.apsoil.2025.106147","DOIUrl":null,"url":null,"abstract":"<div><div>Polycyclic aromatic hydrocarbons (PAHs) are persistent environmental pollutants threatening soil ecosystems and human health. While soil microbial communities possess intrinsic PAH degradation potential, the dynamics of bacterial populations and degradation-associated genes during natural attenuation remain poorly understood. This study investigated the self-purification capacity of PAH-contaminated soil through a 32-day microcosm experiment using three model PAHs: naphthalene (NAP), phenanthrene (PHE), and pyrene (PYR). Results demonstrated high PAH dissipation rates (94.36 %, 72.60 %, and 47.70 % for NAP, PHE, and PYR, respectively). High-throughput sequencing revealed that PAH exposure (10–100 mg kg<sup>−1</sup>) shifted bacterial community structure, enriching Actinobacterial taxa (Mycobacterium, Rhodococcus, Nocardioides) linked to PAH degradation and strengthening bacterial interactions. Quantitative PCR further indicated substrate-specific gene responses: Actinobacteria harboring nahAC preferentially degraded NAP, while nidA and phe genes were upregulated under PHE/PYR stress. These findings highlight Actinobacteria as keystone degraders and propose leveraging microbial community assembly strategies to optimize bioremediation of PAH-contaminated soils.</div></div>","PeriodicalId":8099,"journal":{"name":"Applied Soil Ecology","volume":"211 ","pages":"Article 106147"},"PeriodicalIF":4.8000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Responses of soil bacterial communities and PAH-degrading genes to PAHs during soil self-purification: Evidence from a microcosm experiment\",\"authors\":\"Xian Zhou ,&nbsp;Xuwei Li ,&nbsp;Chao Lu ,&nbsp;Jian Wang ,&nbsp;Chao Qin ,&nbsp;Wanting Ling\",\"doi\":\"10.1016/j.apsoil.2025.106147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Polycyclic aromatic hydrocarbons (PAHs) are persistent environmental pollutants threatening soil ecosystems and human health. While soil microbial communities possess intrinsic PAH degradation potential, the dynamics of bacterial populations and degradation-associated genes during natural attenuation remain poorly understood. This study investigated the self-purification capacity of PAH-contaminated soil through a 32-day microcosm experiment using three model PAHs: naphthalene (NAP), phenanthrene (PHE), and pyrene (PYR). Results demonstrated high PAH dissipation rates (94.36 %, 72.60 %, and 47.70 % for NAP, PHE, and PYR, respectively). High-throughput sequencing revealed that PAH exposure (10–100 mg kg<sup>−1</sup>) shifted bacterial community structure, enriching Actinobacterial taxa (Mycobacterium, Rhodococcus, Nocardioides) linked to PAH degradation and strengthening bacterial interactions. Quantitative PCR further indicated substrate-specific gene responses: Actinobacteria harboring nahAC preferentially degraded NAP, while nidA and phe genes were upregulated under PHE/PYR stress. These findings highlight Actinobacteria as keystone degraders and propose leveraging microbial community assembly strategies to optimize bioremediation of PAH-contaminated soils.</div></div>\",\"PeriodicalId\":8099,\"journal\":{\"name\":\"Applied Soil Ecology\",\"volume\":\"211 \",\"pages\":\"Article 106147\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Soil Ecology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0929139325002859\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soil Ecology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0929139325002859","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

多环芳烃(PAHs)是威胁土壤生态系统和人类健康的持久性环境污染物。虽然土壤微生物群落具有内在的多环芳烃降解潜力,但细菌种群和降解相关基因在自然衰减过程中的动态仍然知之甚少。本研究采用萘(NAP)、菲(PHE)和芘(PYR) 3种模型多环芳烃,通过32天的微观环境实验,研究了多环芳烃污染土壤的自净能力。结果显示,NAP、PHE和PYR的PAH耗散率分别为94.36%、72.60%和47.70%。高通量测序显示,PAH暴露(10-100 mg kg−1)改变了细菌群落结构,丰富了与PAH降解相关的放线菌类群(分枝杆菌、红球菌、诺卡杆菌),并加强了细菌间的相互作用。定量PCR进一步显示了底物特异性基因反应:含有nahAC的放线菌优先降解NAP,而nidA和phe基因在phe /PYR胁迫下上调。这些发现强调了放线菌是关键的降解者,并提出了利用微生物群落组装策略来优化多环芳烃污染土壤的生物修复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Responses of soil bacterial communities and PAH-degrading genes to PAHs during soil self-purification: Evidence from a microcosm experiment

Responses of soil bacterial communities and PAH-degrading genes to PAHs during soil self-purification: Evidence from a microcosm experiment
Polycyclic aromatic hydrocarbons (PAHs) are persistent environmental pollutants threatening soil ecosystems and human health. While soil microbial communities possess intrinsic PAH degradation potential, the dynamics of bacterial populations and degradation-associated genes during natural attenuation remain poorly understood. This study investigated the self-purification capacity of PAH-contaminated soil through a 32-day microcosm experiment using three model PAHs: naphthalene (NAP), phenanthrene (PHE), and pyrene (PYR). Results demonstrated high PAH dissipation rates (94.36 %, 72.60 %, and 47.70 % for NAP, PHE, and PYR, respectively). High-throughput sequencing revealed that PAH exposure (10–100 mg kg−1) shifted bacterial community structure, enriching Actinobacterial taxa (Mycobacterium, Rhodococcus, Nocardioides) linked to PAH degradation and strengthening bacterial interactions. Quantitative PCR further indicated substrate-specific gene responses: Actinobacteria harboring nahAC preferentially degraded NAP, while nidA and phe genes were upregulated under PHE/PYR stress. These findings highlight Actinobacteria as keystone degraders and propose leveraging microbial community assembly strategies to optimize bioremediation of PAH-contaminated soils.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Soil Ecology
Applied Soil Ecology 农林科学-土壤科学
CiteScore
9.70
自引率
4.20%
发文量
363
审稿时长
5.3 months
期刊介绍: Applied Soil Ecology addresses the role of soil organisms and their interactions in relation to: sustainability and productivity, nutrient cycling and other soil processes, the maintenance of soil functions, the impact of human activities on soil ecosystems and bio(techno)logical control of soil-inhabiting pests, diseases and weeds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信