Jose M. Saavedra , Christopher Stears , Waldo Campos
{"title":"在没有真实草图训练的情况下,实现基于草图的图像检索的高性能","authors":"Jose M. Saavedra , Christopher Stears , Waldo Campos","doi":"10.1016/j.patrec.2025.04.018","DOIUrl":null,"url":null,"abstract":"<div><div>Sketch-based image retrieval (SBIR) has become an attractive area in computer vision. Along with the advances in deep learning, we have seen more sophisticated models for SBIR that have shown increasingly better results. However, these models are still based on supervised learning strategies, requiring the availability of real sketch-photo pairs. Having a paired dataset is impractical in real environments (e.g. eCommerce), which can limit the massification of this technology. Therefore, based on advances in foundation models for extracting highly semantic features from images, we propose S3BIR-DINOv2, a self-supervised SBIR model using pseudo-sketches to address the absence of real sketches for training, learnable vectors to allow the model to hold only one encoder for processing the underlying two image modalities, contrastive learning and an adapted DINOv2 as the visual encoder. Our experiments show our model performs outstandingly in diverse public datasets without requiring real sketches for training. We reach an overall mAP of 61.10% in Flickr15K and 44.37% in the eCommerce dataset.</div></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"193 ","pages":"Pages 94-100"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Achieving high performance on sketch-based image retrieval without real sketches for training\",\"authors\":\"Jose M. Saavedra , Christopher Stears , Waldo Campos\",\"doi\":\"10.1016/j.patrec.2025.04.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Sketch-based image retrieval (SBIR) has become an attractive area in computer vision. Along with the advances in deep learning, we have seen more sophisticated models for SBIR that have shown increasingly better results. However, these models are still based on supervised learning strategies, requiring the availability of real sketch-photo pairs. Having a paired dataset is impractical in real environments (e.g. eCommerce), which can limit the massification of this technology. Therefore, based on advances in foundation models for extracting highly semantic features from images, we propose S3BIR-DINOv2, a self-supervised SBIR model using pseudo-sketches to address the absence of real sketches for training, learnable vectors to allow the model to hold only one encoder for processing the underlying two image modalities, contrastive learning and an adapted DINOv2 as the visual encoder. Our experiments show our model performs outstandingly in diverse public datasets without requiring real sketches for training. We reach an overall mAP of 61.10% in Flickr15K and 44.37% in the eCommerce dataset.</div></div>\",\"PeriodicalId\":54638,\"journal\":{\"name\":\"Pattern Recognition Letters\",\"volume\":\"193 \",\"pages\":\"Pages 94-100\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Recognition Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167865525001527\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167865525001527","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Achieving high performance on sketch-based image retrieval without real sketches for training
Sketch-based image retrieval (SBIR) has become an attractive area in computer vision. Along with the advances in deep learning, we have seen more sophisticated models for SBIR that have shown increasingly better results. However, these models are still based on supervised learning strategies, requiring the availability of real sketch-photo pairs. Having a paired dataset is impractical in real environments (e.g. eCommerce), which can limit the massification of this technology. Therefore, based on advances in foundation models for extracting highly semantic features from images, we propose S3BIR-DINOv2, a self-supervised SBIR model using pseudo-sketches to address the absence of real sketches for training, learnable vectors to allow the model to hold only one encoder for processing the underlying two image modalities, contrastive learning and an adapted DINOv2 as the visual encoder. Our experiments show our model performs outstandingly in diverse public datasets without requiring real sketches for training. We reach an overall mAP of 61.10% in Flickr15K and 44.37% in the eCommerce dataset.
期刊介绍:
Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition.
Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.