Yindong Shi , Aojie Zhang , Lina Wang , Tao Liu , Xiliang Zhang , Xinrui Yang , Zhenguo Xing , Yuntian Zhu
{"title":"具有卓越强度-延性组合的全球三维梯度结构钢板","authors":"Yindong Shi , Aojie Zhang , Lina Wang , Tao Liu , Xiliang Zhang , Xinrui Yang , Zhenguo Xing , Yuntian Zhu","doi":"10.1016/j.msea.2025.148383","DOIUrl":null,"url":null,"abstract":"<div><div>Global gradient structures (GGS) from core to surface processed by twisting have been reported to possess exceptional strength-ductility combinations. However, it is hard to apply this technique to sheet (plate) samples because of their lower axial symmetry. Here, we report a novel 3D-GGS produced in a 304 stainless steel (304ss) sheet using cyclic twisting. The 3D-GGS 304ss sheets exhibited much better strength-ductility combinations than GGS 304ss rods due to their more pronounced heterostructural effects. During the tensile testing, a unique transformation-induced plasticity (TRIP) effect was activated in which reverse martensitic transformation (<em>α′ → γ</em>) was first activated, then transited to forward martensitic transformation (<em>γ → α′</em>) after some strain. Both the reverse and forward TRIP effects contributed to higher ductility. In addition, the 3D-structures also produced hetero-deformation induced (HDI) work hardening to retain ductility. This work developed a practical approach to constructing 3D-GGS to enhance integrated performances of metal sheets and components without changing their geometries.</div></div>","PeriodicalId":385,"journal":{"name":"Materials Science and Engineering: A","volume":"935 ","pages":"Article 148383"},"PeriodicalIF":6.1000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global 3D-gradient-structured steel sheets with superior strength-ductility combination\",\"authors\":\"Yindong Shi , Aojie Zhang , Lina Wang , Tao Liu , Xiliang Zhang , Xinrui Yang , Zhenguo Xing , Yuntian Zhu\",\"doi\":\"10.1016/j.msea.2025.148383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Global gradient structures (GGS) from core to surface processed by twisting have been reported to possess exceptional strength-ductility combinations. However, it is hard to apply this technique to sheet (plate) samples because of their lower axial symmetry. Here, we report a novel 3D-GGS produced in a 304 stainless steel (304ss) sheet using cyclic twisting. The 3D-GGS 304ss sheets exhibited much better strength-ductility combinations than GGS 304ss rods due to their more pronounced heterostructural effects. During the tensile testing, a unique transformation-induced plasticity (TRIP) effect was activated in which reverse martensitic transformation (<em>α′ → γ</em>) was first activated, then transited to forward martensitic transformation (<em>γ → α′</em>) after some strain. Both the reverse and forward TRIP effects contributed to higher ductility. In addition, the 3D-structures also produced hetero-deformation induced (HDI) work hardening to retain ductility. This work developed a practical approach to constructing 3D-GGS to enhance integrated performances of metal sheets and components without changing their geometries.</div></div>\",\"PeriodicalId\":385,\"journal\":{\"name\":\"Materials Science and Engineering: A\",\"volume\":\"935 \",\"pages\":\"Article 148383\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Engineering: A\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921509325006070\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: A","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921509325006070","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Global 3D-gradient-structured steel sheets with superior strength-ductility combination
Global gradient structures (GGS) from core to surface processed by twisting have been reported to possess exceptional strength-ductility combinations. However, it is hard to apply this technique to sheet (plate) samples because of their lower axial symmetry. Here, we report a novel 3D-GGS produced in a 304 stainless steel (304ss) sheet using cyclic twisting. The 3D-GGS 304ss sheets exhibited much better strength-ductility combinations than GGS 304ss rods due to their more pronounced heterostructural effects. During the tensile testing, a unique transformation-induced plasticity (TRIP) effect was activated in which reverse martensitic transformation (α′ → γ) was first activated, then transited to forward martensitic transformation (γ → α′) after some strain. Both the reverse and forward TRIP effects contributed to higher ductility. In addition, the 3D-structures also produced hetero-deformation induced (HDI) work hardening to retain ductility. This work developed a practical approach to constructing 3D-GGS to enhance integrated performances of metal sheets and components without changing their geometries.
期刊介绍:
Materials Science and Engineering A provides an international medium for the publication of theoretical and experimental studies related to the load-bearing capacity of materials as influenced by their basic properties, processing history, microstructure and operating environment. Appropriate submissions to Materials Science and Engineering A should include scientific and/or engineering factors which affect the microstructure - strength relationships of materials and report the changes to mechanical behavior.