Behzad Hamedi , Abhishek Saraswat , Jeff Warfford , Cameron Garman , William V. Mars , Saied Taheri
{"title":"轮辋支撑跑气轮胎热-力学与结构耦合特性的初步概念研究","authors":"Behzad Hamedi , Abhishek Saraswat , Jeff Warfford , Cameron Garman , William V. Mars , Saied Taheri","doi":"10.1016/j.engfailanal.2025.109617","DOIUrl":null,"url":null,"abstract":"<div><div>Rim-supported inserts in run-flat tires (RSS RFTs) ensure extended mobility after a blowout, offering at least 50 miles of operation at 45 mph under zero-pressure conditions. However, excessive heat generation during deflation accelerates rubber aging and degrades performance. To address this, a validated 3D finite element model, coupled with Abaqus/CAE and Endurica co-simulations, is used to analyze strain distribution, contact patch characteristics, and thermo-mechanical behavior.</div><div>Results reveal high strain and heat generation concentrated in the contact patch center, intensifying material degradation and the risk of premature failure. Strain redistribution mechanisms, shifting strain from the footprint and inner liner zones toward the sidewall, enhance durability and mobility under repeated loading or deflation scenarios. The methodology optimizes insert designs to mitigate localized stresses, deformation, sidewall warpage, and thermal issues, thereby extending fatigue life in deflated conditions.This study highlights critical design factors influencing the durability and performance of rim-supported run-flat tires (RSS RFTs). Simulation-driven methodologies are employed to evaluate and optimize key parameters such as durability, contact patch footprint area, pressure distribution, radial stiffness, and overall operational efficiency. A nonlinear FEA model in Abaqus/CAE accurately simulates large deformations, material behavior, and tire geometry, validated through mesh convergence studies, sensitivity analyses, and failure mechanism evaluations under diverse loading conditions. Predicted fatigue life and thermal performance align with prior studies, confirming the reliability of the approach and its potential for real-world application.</div></div>","PeriodicalId":11677,"journal":{"name":"Engineering Failure Analysis","volume":"176 ","pages":"Article 109617"},"PeriodicalIF":4.4000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A preliminary conceptual study for coupled thermo-mechanical and structural characterization of rim-supported run-flat tires\",\"authors\":\"Behzad Hamedi , Abhishek Saraswat , Jeff Warfford , Cameron Garman , William V. Mars , Saied Taheri\",\"doi\":\"10.1016/j.engfailanal.2025.109617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Rim-supported inserts in run-flat tires (RSS RFTs) ensure extended mobility after a blowout, offering at least 50 miles of operation at 45 mph under zero-pressure conditions. However, excessive heat generation during deflation accelerates rubber aging and degrades performance. To address this, a validated 3D finite element model, coupled with Abaqus/CAE and Endurica co-simulations, is used to analyze strain distribution, contact patch characteristics, and thermo-mechanical behavior.</div><div>Results reveal high strain and heat generation concentrated in the contact patch center, intensifying material degradation and the risk of premature failure. Strain redistribution mechanisms, shifting strain from the footprint and inner liner zones toward the sidewall, enhance durability and mobility under repeated loading or deflation scenarios. The methodology optimizes insert designs to mitigate localized stresses, deformation, sidewall warpage, and thermal issues, thereby extending fatigue life in deflated conditions.This study highlights critical design factors influencing the durability and performance of rim-supported run-flat tires (RSS RFTs). Simulation-driven methodologies are employed to evaluate and optimize key parameters such as durability, contact patch footprint area, pressure distribution, radial stiffness, and overall operational efficiency. A nonlinear FEA model in Abaqus/CAE accurately simulates large deformations, material behavior, and tire geometry, validated through mesh convergence studies, sensitivity analyses, and failure mechanism evaluations under diverse loading conditions. Predicted fatigue life and thermal performance align with prior studies, confirming the reliability of the approach and its potential for real-world application.</div></div>\",\"PeriodicalId\":11677,\"journal\":{\"name\":\"Engineering Failure Analysis\",\"volume\":\"176 \",\"pages\":\"Article 109617\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Failure Analysis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350630725003589\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Failure Analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350630725003589","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
A preliminary conceptual study for coupled thermo-mechanical and structural characterization of rim-supported run-flat tires
Rim-supported inserts in run-flat tires (RSS RFTs) ensure extended mobility after a blowout, offering at least 50 miles of operation at 45 mph under zero-pressure conditions. However, excessive heat generation during deflation accelerates rubber aging and degrades performance. To address this, a validated 3D finite element model, coupled with Abaqus/CAE and Endurica co-simulations, is used to analyze strain distribution, contact patch characteristics, and thermo-mechanical behavior.
Results reveal high strain and heat generation concentrated in the contact patch center, intensifying material degradation and the risk of premature failure. Strain redistribution mechanisms, shifting strain from the footprint and inner liner zones toward the sidewall, enhance durability and mobility under repeated loading or deflation scenarios. The methodology optimizes insert designs to mitigate localized stresses, deformation, sidewall warpage, and thermal issues, thereby extending fatigue life in deflated conditions.This study highlights critical design factors influencing the durability and performance of rim-supported run-flat tires (RSS RFTs). Simulation-driven methodologies are employed to evaluate and optimize key parameters such as durability, contact patch footprint area, pressure distribution, radial stiffness, and overall operational efficiency. A nonlinear FEA model in Abaqus/CAE accurately simulates large deformations, material behavior, and tire geometry, validated through mesh convergence studies, sensitivity analyses, and failure mechanism evaluations under diverse loading conditions. Predicted fatigue life and thermal performance align with prior studies, confirming the reliability of the approach and its potential for real-world application.
期刊介绍:
Engineering Failure Analysis publishes research papers describing the analysis of engineering failures and related studies.
Papers relating to the structure, properties and behaviour of engineering materials are encouraged, particularly those which also involve the detailed application of materials parameters to problems in engineering structures, components and design. In addition to the area of materials engineering, the interacting fields of mechanical, manufacturing, aeronautical, civil, chemical, corrosion and design engineering are considered relevant. Activity should be directed at analysing engineering failures and carrying out research to help reduce the incidences of failures and to extend the operating horizons of engineering materials.
Emphasis is placed on the mechanical properties of materials and their behaviour when influenced by structure, process and environment. Metallic, polymeric, ceramic and natural materials are all included and the application of these materials to real engineering situations should be emphasised. The use of a case-study based approach is also encouraged.
Engineering Failure Analysis provides essential reference material and critical feedback into the design process thereby contributing to the prevention of engineering failures in the future. All submissions will be subject to peer review from leading experts in the field.